X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Fcomputation%2Flsx.ma;h=7bb8aec4af5f8e77b80b6f1a404f46bf5df9f8d4;hb=ad3ca38634cfae29e8c26d0ab23cb466407eca5e;hp=435650bd1577b568851819f9f9fc4c564fcd0ec0;hpb=c69a33bba2ae2f37953737940fb45149136cf054;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/lsx.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/lsx.ma index 435650bd1..7bb8aec4a 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/lsx.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/lsx.ma @@ -13,97 +13,97 @@ (**************************************************************************) include "basic_2/notation/relations/sn_6.ma". -include "basic_2/substitution/lleq.ma". +include "basic_2/multiple/lleq.ma". include "basic_2/reduction/lpx.ma". (* SN EXTENDED STRONGLY NORMALIZING LOCAL ENVIRONMENTS **********************) definition lsx: ∀h. sd h → relation4 ynat term genv lenv ≝ - λh,g,d,T,G. SN … (lpx h g G) (lleq d T). + λh,o,l,T,G. SN … (lpx h o G) (lleq l T). interpretation "extended strong normalization (local environment)" - 'SN h g d T G L = (lsx h g T d G L). + 'SN h o l T G L = (lsx h o T l G L). (* Basic eliminators ********************************************************) -lemma lsx_ind: ∀h,g,G,T,d. ∀R:predicate lenv. - (∀L1. G ⊢ ⬊*[h, g, T, d] L1 → - (∀L2. ⦃G, L1⦄ ⊢ ➡[h, g] L2 → (L1 ⋕[T, d] L2 → ⊥) → R L2) → +lemma lsx_ind: ∀h,o,G,T,l. ∀R:predicate lenv. + (∀L1. G ⊢ ⬊*[h, o, T, l] L1 → + (∀L2. ⦃G, L1⦄ ⊢ ➡[h, o] L2 → (L1 ≡[T, l] L2 → ⊥) → R L2) → R L1 ) → - ∀L. G ⊢ ⬊*[h, g, T, d] L → R L. -#h #g #G #T #d #R #H0 #L1 #H elim H -L1 + ∀L. G ⊢ ⬊*[h, o, T, l] L → R L. +#h #o #G #T #l #R #H0 #L1 #H elim H -L1 /5 width=1 by lleq_sym, SN_intro/ qed-. (* Basic properties *********************************************************) -lemma lsx_intro: ∀h,g,G,L1,T,d. - (∀L2. ⦃G, L1⦄ ⊢ ➡[h, g] L2 → (L1 ⋕[T, d] L2 → ⊥) → G ⊢ ⬊*[h, g, T, d] L2) → - G ⊢ ⬊*[h, g, T, d] L1. +lemma lsx_intro: ∀h,o,G,L1,T,l. + (∀L2. ⦃G, L1⦄ ⊢ ➡[h, o] L2 → (L1 ≡[T, l] L2 → ⊥) → G ⊢ ⬊*[h, o, T, l] L2) → + G ⊢ ⬊*[h, o, T, l] L1. /5 width=1 by lleq_sym, SN_intro/ qed. -lemma lsx_atom: ∀h,g,G,T,d. G ⊢ ⬊*[h, g, T, d] ⋆. -#h #g #G #T #d @lsx_intro +lemma lsx_atom: ∀h,o,G,T,l. G ⊢ ⬊*[h, o, T, l] ⋆. +#h #o #G #T #l @lsx_intro #X #H #HT lapply (lpx_inv_atom1 … H) -H #H destruct elim HT -HT // qed. -lemma lsx_sort: ∀h,g,G,L,d,k. G ⊢ ⬊*[h, g, ⋆k, d] L. -#h #g #G #L1 #d #k @lsx_intro +lemma lsx_sort: ∀h,o,G,L,l,s. G ⊢ ⬊*[h, o, ⋆s, l] L. +#h #o #G #L1 #l #s @lsx_intro #L2 #HL12 #H elim H -H /3 width=4 by lpx_fwd_length, lleq_sort/ qed. -lemma lsx_gref: ∀h,g,G,L,d,p. G ⊢ ⬊*[h, g, §p, d] L. -#h #g #G #L1 #d #p @lsx_intro +lemma lsx_gref: ∀h,o,G,L,l,p. G ⊢ ⬊*[h, o, §p, l] L. +#h #o #G #L1 #l #p @lsx_intro #L2 #HL12 #H elim H -H /3 width=4 by lpx_fwd_length, lleq_gref/ qed. -lemma lsx_ge_up: ∀h,g,G,L,T,U,dt,d,e. dt ≤ yinj d + yinj e → - ⇧[d, e] T ≡ U → G ⊢ ⬊*[h, g, U, dt] L → G ⊢ ⬊*[h, g, U, d] L. -#h #g #G #L #T #U #dt #d #e #Hdtde #HTU #H @(lsx_ind … H) -L +lemma lsx_ge_up: ∀h,o,G,L,T,U,lt,l,k. lt ≤ yinj l + yinj k → + ⬆[l, k] T ≡ U → G ⊢ ⬊*[h, o, U, lt] L → G ⊢ ⬊*[h, o, U, l] L. +#h #o #G #L #T #U #lt #l #k #Hltlm #HTU #H @(lsx_ind … H) -L /5 width=7 by lsx_intro, lleq_ge_up/ qed-. -lemma lsx_ge: ∀h,g,G,L,T,d1,d2. d1 ≤ d2 → - G ⊢ ⬊*[h, g, T, d1] L → G ⊢ ⬊*[h, g, T, d2] L. -#h #g #G #L #T #d1 #d2 #Hd12 #H @(lsx_ind … H) -L +lemma lsx_ge: ∀h,o,G,L,T,l1,l2. l1 ≤ l2 → + G ⊢ ⬊*[h, o, T, l1] L → G ⊢ ⬊*[h, o, T, l2] L. +#h #o #G #L #T #l1 #l2 #Hl12 #H @(lsx_ind … H) -L /5 width=7 by lsx_intro, lleq_ge/ qed-. (* Basic forward lemmas *****************************************************) -lemma lsx_fwd_bind_sn: ∀h,g,a,I,G,L,V,T,d. G ⊢ ⬊*[h, g, ⓑ{a,I}V.T, d] L → - G ⊢ ⬊*[h, g, V, d] L. -#h #g #a #I #G #L #V #T #d #H @(lsx_ind … H) -L +lemma lsx_fwd_bind_sn: ∀h,o,a,I,G,L,V,T,l. G ⊢ ⬊*[h, o, ⓑ{a,I}V.T, l] L → + G ⊢ ⬊*[h, o, V, l] L. +#h #o #a #I #G #L #V #T #l #H @(lsx_ind … H) -L #L1 #_ #IHL1 @lsx_intro #L2 #HL12 #HV @IHL1 /3 width=4 by lleq_fwd_bind_sn/ qed-. -lemma lsx_fwd_flat_sn: ∀h,g,I,G,L,V,T,d. G ⊢ ⬊*[h, g, ⓕ{I}V.T, d] L → - G ⊢ ⬊*[h, g, V, d] L. -#h #g #I #G #L #V #T #d #H @(lsx_ind … H) -L +lemma lsx_fwd_flat_sn: ∀h,o,I,G,L,V,T,l. G ⊢ ⬊*[h, o, ⓕ{I}V.T, l] L → + G ⊢ ⬊*[h, o, V, l] L. +#h #o #I #G #L #V #T #l #H @(lsx_ind … H) -L #L1 #_ #IHL1 @lsx_intro #L2 #HL12 #HV @IHL1 /3 width=3 by lleq_fwd_flat_sn/ qed-. -lemma lsx_fwd_flat_dx: ∀h,g,I,G,L,V,T,d. G ⊢ ⬊*[h, g, ⓕ{I}V.T, d] L → - G ⊢ ⬊*[h, g, T, d] L. -#h #g #I #G #L #V #T #d #H @(lsx_ind … H) -L +lemma lsx_fwd_flat_dx: ∀h,o,I,G,L,V,T,l. G ⊢ ⬊*[h, o, ⓕ{I}V.T, l] L → + G ⊢ ⬊*[h, o, T, l] L. +#h #o #I #G #L #V #T #l #H @(lsx_ind … H) -L #L1 #_ #IHL1 @lsx_intro #L2 #HL12 #HV @IHL1 /3 width=3 by lleq_fwd_flat_dx/ qed-. -lemma lsx_fwd_pair_sn: ∀h,g,I,G,L,V,T,d. G ⊢ ⬊*[h, g, ②{I}V.T, d] L → - G ⊢ ⬊*[h, g, V, d] L. -#h #g * /2 width=4 by lsx_fwd_bind_sn, lsx_fwd_flat_sn/ +lemma lsx_fwd_pair_sn: ∀h,o,I,G,L,V,T,l. G ⊢ ⬊*[h, o, ②{I}V.T, l] L → + G ⊢ ⬊*[h, o, V, l] L. +#h #o * /2 width=4 by lsx_fwd_bind_sn, lsx_fwd_flat_sn/ qed-. (* Basic inversion lemmas ***************************************************) -lemma lsx_inv_flat: ∀h,g,I,G,L,V,T,d. G ⊢ ⬊*[h, g, ⓕ{I}V.T, d] L → - G ⊢ ⬊*[h, g, V, d] L ∧ G ⊢ ⬊*[h, g, T, d] L. +lemma lsx_inv_flat: ∀h,o,I,G,L,V,T,l. G ⊢ ⬊*[h, o, ⓕ{I}V.T, l] L → + G ⊢ ⬊*[h, o, V, l] L ∧ G ⊢ ⬊*[h, o, T, l] L. /3 width=3 by lsx_fwd_flat_sn, lsx_fwd_flat_dx, conj/ qed-.