X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Frelocation%2Fldrop.ma;h=f51640fa13f69b220a7d83a97c94120d61454954;hb=80178d6cf86b78bb9fc47f397f4bcfb1fd15a24f;hp=6d91d0aa0af38f4d4bf16ba424fc05bb613edb90;hpb=f16bbb93ecb40fa40f736e0b1158e1c7676a640a;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/basic_2/relocation/ldrop.ma b/matita/matita/contribs/lambdadelta/basic_2/relocation/ldrop.ma index 6d91d0aa0..f51640fa1 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/relocation/ldrop.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/relocation/ldrop.ma @@ -12,9 +12,9 @@ (* *) (**************************************************************************) -include "basic_2/grammar/cl_weight.ma". +include "basic_2/grammar/lenv_length.ma". +include "basic_2/grammar/lenv_weight.ma". include "basic_2/relocation/lift.ma". -include "basic_2/relocation/lsubr.ma". (* LOCAL ENVIRONMENT SLICING ************************************************) @@ -30,24 +30,24 @@ inductive ldrop: nat → nat → relation lenv ≝ interpretation "local slicing" 'RDrop d e L1 L2 = (ldrop d e L1 L2). -definition l_liftable: (lenv → relation term) → Prop ≝ +definition l_liftable: predicate (lenv → relation term) ≝ λR. ∀K,T1,T2. R K T1 T2 → ∀L,d,e. ⇩[d, e] L ≡ K → ∀U1. ⇧[d, e] T1 ≡ U1 → ∀U2. ⇧[d, e] T2 ≡ U2 → R L U1 U2. -definition l_deliftable_sn: (lenv → relation term) → Prop ≝ +definition l_deliftable_sn: predicate (lenv → relation term) ≝ λR. ∀L,U1,U2. R L U1 U2 → ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → ∃∃T2. ⇧[d, e] T2 ≡ U2 & R K T1 T2. -definition dropable_sn: relation lenv → Prop ≝ +definition dropable_sn: predicate (relation lenv) ≝ λR. ∀L1,K1,d,e. ⇩[d, e] L1 ≡ K1 → ∀L2. R L1 L2 → ∃∃K2. R K1 K2 & ⇩[d, e] L2 ≡ K2. -definition dedropable_sn: relation lenv → Prop ≝ +definition dedropable_sn: predicate (relation lenv) ≝ λR. ∀L1,K1,d,e. ⇩[d, e] L1 ≡ K1 → ∀K2. R K1 K2 → ∃∃L2. R L1 L2 & ⇩[d, e] L2 ≡ K2. -definition dropable_dx: relation lenv → Prop ≝ +definition dropable_dx: predicate (relation lenv) ≝ λR. ∀L1,L2. R L1 L2 → ∀K2,e. ⇩[0, e] L2 ≡ K2 → ∃∃K1. ⇩[0, e] L1 ≡ K1 & R K1 K2. @@ -199,32 +199,21 @@ lemma ldrop_O1_lt: ∀L,i. i < |L| → ∃∃I,K,V. ⇩[0, i] L ≡ K.ⓑ{I}V. ] qed. -lemma ldrop_lsubr_ldrop2_abbr: ∀L1,L2,d,e. L1 ⊑ [d, e] L2 → - ∀K2,V,i. ⇩[0, i] L2 ≡ K2. ⓓV → - d ≤ i → i < d + e → - ∃∃K1. K1 ⊑ [0, d + e - i - 1] K2 & - ⇩[0, i] L1 ≡ K1. ⓓV. -#L1 #L2 #d #e #H elim H -L1 -L2 -d -e -[ #d #e #K1 #V #i #H - lapply (ldrop_inv_atom1 … H) -H #H destruct -| #L1 #L2 #K1 #V #i #_ #_ #H - elim (lt_zero_false … H) -| #L1 #L2 #V #e #HL12 #IHL12 #K1 #W #i #H #_ #Hie - elim (ldrop_inv_O1 … H) -H * #Hi #HLK1 - [ -IHL12 -Hie destruct - minus_minus_comm >arith_b1 // /4 width=3/ - ] -| #L1 #L2 #I #V1 #V2 #e #_ #IHL12 #K1 #W #i #H #_ #Hie - elim (ldrop_inv_O1 … H) -H * #Hi #HLK1 - [ -IHL12 -Hie -Hi destruct - | elim (IHL12 … HLK1 ? ?) -IHL12 -HLK1 // /2 width=1/ -Hie >minus_minus_comm >arith_b1 // /3 width=3/ - ] -| #L1 #L2 #I1 #I2 #V1 #V2 #d #e #_ #IHL12 #K1 #V #i #H #Hdi >plus_plus_comm_23 #Hide - elim (le_inv_plus_l … Hdi) #Hdim #Hi - lapply (ldrop_inv_ldrop1 … H ?) -H // #HLK1 - elim (IHL12 … HLK1 ? ?) -IHL12 -HLK1 // /2 width=1/ -Hdi -Hide >minus_minus_comm >arith_b1 // /3 width=3/ +lemma l_liftable_LTC: ∀R. l_liftable R → l_liftable (LTC … R). +#R #HR #K #T1 #T2 #H elim H -T2 +[ /3 width=9/ +| #T #T2 #_ #HT2 #IHT1 #L #d #e #HLK #U1 #HTU1 #U2 #HTU2 + elim (lift_total T d e) /4 width=11 by step/ (**) (* auto too slow without trace *) +] +qed. + +lemma l_deliftable_sn_LTC: ∀R. l_deliftable_sn R → l_deliftable_sn (LTC … R). +#R #HR #L #U1 #U2 #H elim H -U2 +[ #U2 #HU12 #K #d #e #HLK #T1 #HTU1 + elim (HR … HU12 … HLK … HTU1) -HR -L -U1 /3 width=3/ +| #U #U2 #_ #HU2 #IHU1 #K #d #e #HLK #T1 #HTU1 + elim (IHU1 … HLK … HTU1) -IHU1 -U1 #T #HTU #HT1 + elim (HR … HU2 … HLK … HTU) -HR -L -U /3 width=5/ ] qed. @@ -258,6 +247,14 @@ qed. (* Basic forvard lemmas *****************************************************) +lemma ldrop_fwd_lw: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → ♯{L2} ≤ ♯{L1}. +#L1 #L2 #d #e #H elim H -L1 -L2 -d -e // normalize +[ /2 width=3/ +| #L1 #L2 #I #V1 #V2 #d #e #_ #HV21 #IHL12 + >(lift_fwd_tw … HV21) -HV21 /2 width=1/ +] +qed-. + (* Basic_1: was: drop_S *) lemma ldrop_fwd_ldrop2: ∀L1,I2,K2,V2,e. ⇩[O, e] L1 ≡ K2. ⓑ{I2} V2 → ⇩[O, e + 1] L1 ≡ K2. @@ -275,21 +272,6 @@ lemma ldrop_fwd_length: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → |L2| ≤ |L1|. #L1 #L2 #d #e #H elim H -L1 -L2 -d -e // normalize /2 width=1/ qed-. -lemma ldrop_fwd_lw: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → ♯{L2} ≤ ♯{L1}. -#L1 #L2 #d #e #H elim H -L1 -L2 -d -e // normalize -[ /2 width=3/ -| #L1 #L2 #I #V1 #V2 #d #e #_ #HV21 #IHL12 - >(lift_fwd_tw … HV21) -HV21 /2 width=1/ -] -qed-. - -lemma ldrop_pair2_fwd_fw: ∀I,L,K,V,d,e. ⇩[d, e] L ≡ K. ⓑ{I} V → - ∀T. ♯{K, V} < ♯{L, T}. -#I #L #K #V #d #e #H #T -lapply (ldrop_fwd_lw … H) -H #H -@(le_to_lt_to_lt … H) -H /3 width=1/ -qed-. - lemma ldrop_fwd_ldrop2_length: ∀L1,I2,K2,V2,e. ⇩[0, e] L1 ≡ K2. ⓑ{I2} V2 → e < |L1|. #L1 elim L1 -L1 @@ -314,6 +296,29 @@ lemma ldrop_fwd_O1_length: ∀L1,L2,e. ⇩[0, e] L1 ≡ L2 → |L2| = |L1| - e. ] qed-. +lemma ldrop_fwd_lw_eq: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → + |L1| = |L2| → ♯{L2} = ♯{L1}. +#L1 #L2 #d #e #H elim H -L1 -L2 -d -e // +[ #L1 #L2 #I #V #e #HL12 #_ + lapply (ldrop_fwd_O1_length … HL12) -HL12 #HL21 >HL21 -HL21 normalize #H -I + lapply (discr_plus_xy_minus_xz … H) -e #H destruct +| #L1 #L2 #I #V1 #V2 #d #e #_ #HV21 #HL12 normalize in ⊢ (??%%→??%%); #H -I + >(lift_fwd_tw … HV21) -V2 /3 width=1 by eq_f2/ (**) (* auto is a bit slow without trace *) +] +qed-. + +lemma ldrop_fwd_lw_lt: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → + |L2| < |L1| → ♯{L2} < ♯{L1}. +#L1 #L2 #d #e #H elim H -L1 -L2 -d -e // +[ #L #I #V #H elim (lt_refl_false … H) +| #L1 #L2 #I #V #e #HL12 #_ #_ + lapply (ldrop_fwd_lw … HL12) -HL12 #HL12 + @(le_to_lt_to_lt … HL12) -HL12 // +| #L1 #L2 #I #V1 #V2 #d #e #_ #HV21 #IHL12 normalize in ⊢ (?%%→?%%); #H -I + >(lift_fwd_tw … HV21) -V2 /4 width=2 by lt_minus_to_plus, lt_plus_to_lt_l/ (**) (* auto too slow without trace *) +] +qed-. + (* Basic_1: removed theorems 50: drop_ctail drop_skip_flat cimp_flat_sx cimp_flat_dx cimp_bind cimp_getl_conf