X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Frelocation%2Flexs_tc.ma;h=0ddcf6eb2902a3ea5f07aedc11b0a51c02d89d8e;hb=5c186c72f508da0849058afeecc6877cd9ed6303;hp=46a31fe94de6c7fb3c0672b65497519e09b7fa93;hpb=cafb43926d8553c5b7f8dafcb5d734783c19bbfb;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/basic_2/relocation/lexs_tc.ma b/matita/matita/contribs/lambdadelta/basic_2/relocation/lexs_tc.ma index 46a31fe94..0ddcf6eb2 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/relocation/lexs_tc.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/relocation/lexs_tc.ma @@ -17,6 +17,9 @@ include "basic_2/relocation/lexs.ma". (* GENERIC ENTRYWISE EXTENSION OF CONTEXT-SENSITIVE REALTIONS FOR TERMS *****) +definition s_rs_transitive_isid: relation (relation3 lenv bind bind) ≝ λRN,RP. + ∀f. 𝐈⦃f⦄ → s_rs_transitive … RP (λ_.lexs RN RP f). + (* Properties with transitive closure ***************************************) lemma lexs_tc_refl: ∀RN,RP. c_reflexive … RN → c_reflexive … RP → @@ -25,38 +28,38 @@ lemma lexs_tc_refl: ∀RN,RP. c_reflexive … RN → c_reflexive … RP → lemma lexs_tc_next_sn: ∀RN,RP. c_reflexive … RN → ∀f,I2,L1,L2. TC … (lexs RN RP f) L1 L2 → ∀I1. RN L1 I1 I2 → - TC … (lexs RN RP (⫯f)) (L1.ⓘ{I1}) (L2.ⓘ{I2}). + TC … (lexs RN RP (↑f)) (L1.ⓘ{I1}) (L2.ⓘ{I2}). #RN #RP #HRN #f #I2 #L1 #L2 #H @(TC_ind_dx ??????? H) -L1 /3 width=3 by lexs_next, TC_strap, inj/ qed. lemma lexs_tc_next_dx: ∀RN,RP. c_reflexive … RN → c_reflexive … RP → - ∀f,I1,I2,L1. (LTC … RN) L1 I1 I2 → ∀L2. L1 ⪤*[RN, RP, f] L2 → - TC … (lexs RN RP (⫯f)) (L1.ⓘ{I1}) (L2.ⓘ{I2}). + ∀f,I1,I2,L1. (CTC … RN) L1 I1 I2 → ∀L2. L1 ⪤*[RN, RP, f] L2 → + TC … (lexs RN RP (↑f)) (L1.ⓘ{I1}) (L2.ⓘ{I2}). #RN #RP #HRN #HRP #f #I1 #I2 #L1 #H elim H -I2 /4 width=5 by lexs_refl, lexs_next, step, inj/ qed. lemma lexs_tc_push_sn: ∀RN,RP. c_reflexive … RP → ∀f,I2,L1,L2. TC … (lexs RN RP f) L1 L2 → ∀I1. RP L1 I1 I2 → - TC … (lexs RN RP (↑f)) (L1.ⓘ{I1}) (L2.ⓘ{I2}). + TC … (lexs RN RP (⫯f)) (L1.ⓘ{I1}) (L2.ⓘ{I2}). #RN #RP #HRP #f #I2 #L1 #L2 #H @(TC_ind_dx ??????? H) -L1 /3 width=3 by lexs_push, TC_strap, inj/ qed. lemma lexs_tc_push_dx: ∀RN,RP. c_reflexive … RN → c_reflexive … RP → - ∀f,I1,I2,L1. (LTC … RP) L1 I1 I2 → ∀L2. L1 ⪤*[RN, RP, f] L2 → - TC … (lexs RN RP (↑f)) (L1.ⓘ{I1}) (L2.ⓘ{I2}). + ∀f,I1,I2,L1. (CTC … RP) L1 I1 I2 → ∀L2. L1 ⪤*[RN, RP, f] L2 → + TC … (lexs RN RP (⫯f)) (L1.ⓘ{I1}) (L2.ⓘ{I2}). #RN #RP #HRN #HRP #f #I1 #I2 #L1 #H elim H -I2 /4 width=5 by lexs_refl, lexs_push, step, inj/ qed. -lemma lexs_tc_inj_sn: ∀RN,RP,f,L1,L2. L1 ⪤*[RN, RP, f] L2 → L1 ⪤*[LTC … RN, RP, f] L2. +lemma lexs_tc_inj_sn: ∀RN,RP,f,L1,L2. L1 ⪤*[RN, RP, f] L2 → L1 ⪤*[CTC … RN, RP, f] L2. #RN #RP #f #L1 #L2 #H elim H -f -L1 -L2 /3 width=1 by lexs_push, lexs_next, inj/ qed. -lemma lexs_tc_inj_dx: ∀RN,RP,f,L1,L2. L1 ⪤*[RN, RP, f] L2 → L1 ⪤*[RN, LTC … RP, f] L2. +lemma lexs_tc_inj_dx: ∀RN,RP,f,L1,L2. L1 ⪤*[RN, RP, f] L2 → L1 ⪤*[RN, CTC … RP, f] L2. #RN #RP #f #L1 #L2 #H elim H -f -L1 -L2 /3 width=1 by lexs_push, lexs_next, inj/ qed. @@ -64,23 +67,23 @@ qed. (* Main properties with transitive closure **********************************) theorem lexs_tc_next: ∀RN,RP. c_reflexive … RN → c_reflexive … RP → - ∀f,I1,I2,L1. (LTC … RN) L1 I1 I2 → ∀L2. TC … (lexs RN RP f) L1 L2 → - TC … (lexs RN RP (⫯f)) (L1.ⓘ{I1}) (L2.ⓘ{I2}). + ∀f,I1,I2,L1. (CTC … RN) L1 I1 I2 → ∀L2. TC … (lexs RN RP f) L1 L2 → + TC … (lexs RN RP (↑f)) (L1.ⓘ{I1}) (L2.ⓘ{I2}). #RN #RP #HRN #HRP #f #I1 #I2 #L1 #H elim H -I2 /4 width=5 by lexs_tc_next_sn, lexs_tc_refl, trans_TC/ qed. theorem lexs_tc_push: ∀RN,RP. c_reflexive … RN → c_reflexive … RP → - ∀f,I1,I2,L1. (LTC … RP) L1 I1 I2 → ∀L2. TC … (lexs RN RP f) L1 L2 → - TC … (lexs RN RP (↑f)) (L1.ⓘ{I1}) (L2.ⓘ{I2}). + ∀f,I1,I2,L1. (CTC … RP) L1 I1 I2 → ∀L2. TC … (lexs RN RP f) L1 L2 → + TC … (lexs RN RP (⫯f)) (L1.ⓘ{I1}) (L2.ⓘ{I2}). #RN #RP #HRN #HRP #f #I1 #I2 #L1 #H elim H -I2 /4 width=5 by lexs_tc_push_sn, lexs_tc_refl, trans_TC/ qed. (* Basic_2A1: uses: TC_lpx_sn_ind *) -theorem lexs_tc_step_dx: ∀RN,RP. (∀f. 𝐈⦃f⦄ → s_rs_transitive … RP (λ_.lexs RN RP f)) → +theorem lexs_tc_step_dx: ∀RN,RP. s_rs_transitive_isid RN RP → ∀f,L1,L. L1 ⪤*[RN, RP, f] L → 𝐈⦃f⦄ → - ∀L2. L ⪤*[RN, LTC … RP, f] L2 → L1⪤* [RN, LTC … RP, f] L2. + ∀L2. L ⪤*[RN, CTC … RP, f] L2 → L1⪤* [RN, CTC … RP, f] L2. #RN #RP #HRP #f #L1 #L #H elim H -f -L1 -L [ #f #_ #Y #H -HRP >(lexs_inv_atom1 … H) -Y // ] #f #I1 #I #L1 #L #HL1 #HI1 #IH #Hf #Y #H @@ -95,9 +98,8 @@ qed-. (* Advanced properties ******************************************************) -(* Basic_2A1: uses: TC_lpx_sn_inv_lpx_sn_LTC *) -lemma lexs_tc_dx: ∀RN,RP. (∀f. 𝐈⦃f⦄ → s_rs_transitive … RP (λ_.lexs RN RP f)) → - ∀f. 𝐈⦃f⦄ → ∀L1,L2. TC … (lexs RN RP f) L1 L2 → L1 ⪤*[RN, LTC … RP, f] L2. +lemma lexs_tc_dx: ∀RN,RP. s_rs_transitive_isid RN RP → + ∀f. 𝐈⦃f⦄ → ∀L1,L2. TC … (lexs RN RP f) L1 L2 → L1 ⪤*[RN, CTC … RP, f] L2. #RN #RP #HRP #f #Hf #L1 #L2 #H @(TC_ind_dx ??????? H) -L1 /3 width=3 by lexs_tc_step_dx, lexs_tc_inj_dx/ qed. @@ -105,14 +107,13 @@ qed. (* Advanced inversion lemmas ************************************************) lemma lexs_inv_tc_sn: ∀RN,RP. c_reflexive … RN → c_reflexive … RP → - ∀f,L1,L2. L1 ⪤*[LTC … RN, RP, f] L2 → TC … (lexs RN RP f) L1 L2. + ∀f,L1,L2. L1 ⪤*[CTC … RN, RP, f] L2 → TC … (lexs RN RP f) L1 L2. #RN #RP #HRN #HRP #f #L1 #L2 #H elim H -f -L1 -L2 /2 width=1 by lexs_tc_next, lexs_tc_push_sn, lexs_atom, inj/ qed-. -(* Basic_2A1: uses: lpx_sn_LTC_TC_lpx_sn *) lemma lexs_inv_tc_dx: ∀RN,RP. c_reflexive … RN → c_reflexive … RP → - ∀f,L1,L2. L1 ⪤*[RN, LTC … RP, f] L2 → TC … (lexs RN RP f) L1 L2. + ∀f,L1,L2. L1 ⪤*[RN, CTC … RP, f] L2 → TC … (lexs RN RP f) L1 L2. #RN #RP #HRN #HRP #f #L1 #L2 #H elim H -f -L1 -L2 /2 width=1 by lexs_tc_push, lexs_tc_next_sn, lexs_atom, inj/ qed-.