X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Frelocation%2Fllpx_sn_alt.ma;h=d0b9b2049620d4e7f873288c99c20efc0e5e6b3f;hb=f282b35b958c9602fb1f47e5677b5805a046ac76;hp=bc8528408f5466dd7e016f36dbddf78e8e73dbc1;hpb=cb5ca7ea4e826e9331eabeaea44353caab00071e;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/basic_2/relocation/llpx_sn_alt.ma b/matita/matita/contribs/lambdadelta/basic_2/relocation/llpx_sn_alt.ma index bc8528408..d0b9b2049 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/relocation/llpx_sn_alt.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/relocation/llpx_sn_alt.ma @@ -19,10 +19,10 @@ include "basic_2/relocation/llpx_sn.ma". (* LAZY SN POINTWISE EXTENSION OF A CONTEXT-SENSITIVE REALTION FOR TERMS ****) (* alternative definition of llpx_sn *) -inductive llpx_sn_alt (R:relation3 lenv term term): relation4 ynat term lenv lenv ≝ +inductive llpx_sn_alt (R:relation4 bind2 lenv term term): relation4 ynat term lenv lenv ≝ | llpx_sn_alt_intro: ∀L1,L2,T,d. (∀I1,I2,K1,K2,V1,V2,i. d ≤ yinj i → (∀U. ⇧[i, 1] U ≡ T → ⊥) → - ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L2 ≡ K2.ⓑ{I2}V2 → I1 = I2 ∧ R K1 V1 V2 + ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L2 ≡ K2.ⓑ{I2}V2 → I1 = I2 ∧ R I1 K1 V1 V2 ) → (∀I1,I2,K1,K2,V1,V2,i. d ≤ yinj i → (∀U. ⇧[i, 1] U ≡ T → ⊥) → ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L2 ≡ K2.ⓑ{I2}V2 → llpx_sn_alt R 0 V1 K1 K2 @@ -34,7 +34,7 @@ inductive llpx_sn_alt (R:relation3 lenv term term): relation4 ynat term lenv len lemma llpx_sn_alt_intro_alt: ∀R,L1,L2,T,d. |L1| = |L2| → (∀I1,I2,K1,K2,V1,V2,i. d ≤ yinj i → (∀U. ⇧[i, 1] U ≡ T → ⊥) → ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L2 ≡ K2.ⓑ{I2}V2 → - ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn_alt R 0 V1 K1 K2 + ∧∧ I1 = I2 & R I1 K1 V1 V2 & llpx_sn_alt R 0 V1 K1 K2 ) → llpx_sn_alt R d T L1 L2. #R #L1 #L2 #T #d #HL12 #IH @llpx_sn_alt_intro // -HL12 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hid #HnT #HLK1 #HLK2 @@ -45,7 +45,7 @@ lemma llpx_sn_alt_ind_alt: ∀R. ∀S:relation4 ynat term lenv lenv. (∀L1,L2,T,d. |L1| = |L2| → ( ∀I1,I2,K1,K2,V1,V2,i. d ≤ yinj i → (∀U. ⇧[i, 1] U ≡ T → ⊥) → ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L2 ≡ K2.ⓑ{I2}V2 → - ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn_alt R 0 V1 K1 K2 & S 0 V1 K1 K2 + ∧∧ I1 = I2 & R I1 K1 V1 V2 & llpx_sn_alt R 0 V1 K1 K2 & S 0 V1 K1 K2 ) → S d T L1 L2) → ∀L1,L2,T,d. llpx_sn_alt R d T L1 L2 → S d T L1 L2. #R #S #IH #L1 #L2 #T #d #H elim H -L1 -L2 -T -d @@ -58,7 +58,7 @@ lemma llpx_sn_alt_inv_alt: ∀R,L1,L2,T,d. llpx_sn_alt R d T L1 L2 → |L1| = |L2| ∧ ∀I1,I2,K1,K2,V1,V2,i. d ≤ yinj i → (∀U. ⇧[i, 1] U ≡ T → ⊥) → ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L2 ≡ K2.ⓑ{I2}V2 → - ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn_alt R 0 V1 K1 K2. + ∧∧ I1 = I2 & R I1 K1 V1 V2 & llpx_sn_alt R 0 V1 K1 K2. #R #L1 #L2 #T #d #H @(llpx_sn_alt_ind_alt … H) -L1 -L2 -T -d #L1 #L2 #T #d #HL12 #IH @conj // -HL12 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hid #HnT #HLK1 #HLK2 @@ -103,7 +103,7 @@ lemma llpx_sn_alt_fwd_lref: ∀R,L1,L2,d,i. llpx_sn_alt R d (#i) L1 L2 → | ∃∃I,K1,K2,V1,V2. ⇩[i] L1 ≡ K1.ⓑ{I}V1 & ⇩[i] L2 ≡ K2.ⓑ{I}V2 & llpx_sn_alt R (yinj 0) V1 K1 K2 & - R K1 V1 V2 & d ≤ yinj i. + R I K1 V1 V2 & d ≤ yinj i. #R #L1 #L2 #d #i #H elim (llpx_sn_alt_inv_alt … H) -H #HL12 #IH elim (lt_or_ge i (|L1|)) /3 width=1 by or3_intro0, conj/ elim (ylt_split i d) /3 width=1 by or3_intro1/ @@ -141,7 +141,7 @@ qed. lemma llpx_sn_alt_lref: ∀R,I,L1,L2,K1,K2,V1,V2,d,i. d ≤ yinj i → ⇩[i] L1 ≡ K1.ⓑ{I}V1 → ⇩[i] L2 ≡ K2.ⓑ{I}V2 → - llpx_sn_alt R 0 V1 K1 K2 → R K1 V1 V2 → + llpx_sn_alt R 0 V1 K1 K2 → R I K1 V1 V2 → llpx_sn_alt R d (#i) L1 L2. #R #I #L1 #L2 #K1 #K2 #V1 #V2 #d #i #Hdi #HLK1 #HLK2 #HK12 #HV12 @llpx_sn_alt_intro_alt [ lapply (llpx_sn_alt_fwd_length … HK12) -HK12 #HK12 @@ -215,7 +215,7 @@ qed-. lemma llpx_sn_intro_alt: ∀R,L1,L2,T,d. |L1| = |L2| → (∀I1,I2,K1,K2,V1,V2,i. d ≤ yinj i → (∀U. ⇧[i, 1] U ≡ T → ⊥) → ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L2 ≡ K2.ⓑ{I2}V2 → - ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn R 0 V1 K1 K2 + ∧∧ I1 = I2 & R I1 K1 V1 V2 & llpx_sn R 0 V1 K1 K2 ) → llpx_sn R d T L1 L2. #R #L1 #L2 #T #d #HL12 #IH @llpx_sn_alt_inv_lpx_sn @llpx_sn_alt_intro_alt // -HL12 @@ -227,7 +227,7 @@ lemma llpx_sn_ind_alt: ∀R. ∀S:relation4 ynat term lenv lenv. (∀L1,L2,T,d. |L1| = |L2| → ( ∀I1,I2,K1,K2,V1,V2,i. d ≤ yinj i → (∀U. ⇧[i, 1] U ≡ T → ⊥) → ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L2 ≡ K2.ⓑ{I2}V2 → - ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn R 0 V1 K1 K2 & S 0 V1 K1 K2 + ∧∧ I1 = I2 & R I1 K1 V1 V2 & llpx_sn R 0 V1 K1 K2 & S 0 V1 K1 K2 ) → S d T L1 L2) → ∀L1,L2,T,d. llpx_sn R d T L1 L2 → S d T L1 L2. #R #S #IH1 #L1 #L2 #T #d #H lapply (llpx_sn_lpx_sn_alt … H) -H @@ -241,7 +241,7 @@ lemma llpx_sn_inv_alt: ∀R,L1,L2,T,d. llpx_sn R d T L1 L2 → |L1| = |L2| ∧ ∀I1,I2,K1,K2,V1,V2,i. d ≤ yinj i → (∀U. ⇧[i, 1] U ≡ T → ⊥) → ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L2 ≡ K2.ⓑ{I2}V2 → - ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn R 0 V1 K1 K2. + ∧∧ I1 = I2 & R I1 K1 V1 V2 & llpx_sn R 0 V1 K1 K2. #R #L1 #L2 #T #d #H lapply (llpx_sn_lpx_sn_alt … H) -H #H elim (llpx_sn_alt_inv_alt … H) -H #HL12 #IH @conj //