X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Frt_computation%2Fjsx.ma;fp=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Frt_computation%2Fjsx.ma;h=94a1ec855107b68d289fdf7201b7d12b0f618924;hb=a454837a256907d2f83d42ced7be847e10361ea9;hp=0000000000000000000000000000000000000000;hpb=b4283c079ed7069016b8d924bbc7e08872440829;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/jsx.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/jsx.ma new file mode 100644 index 000000000..94a1ec855 --- /dev/null +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/jsx.ma @@ -0,0 +1,164 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "basic_2/notation/relations/topredtysnstrong_5.ma". +include "basic_2/rt_computation/rsx.ma". + +(* COMPATIBILITY OF STRONG NORMALIZATION FOR UNBOUND RT-TRANSITION **********) + +(* Note: this should be an instance of a more general sex *) +(* Basic_2A1: uses: lcosx *) +inductive jsx (h) (G): rtmap → relation lenv ≝ +| jsx_atom: ∀f. jsx h G f (⋆) (⋆) +| jsx_push: ∀f,I,K1,K2. jsx h G f K1 K2 → + jsx h G (⫯f) (K1.ⓘ{I}) (K2.ⓘ{I}) +| jsx_unit: ∀f,I,K1,K2. jsx h G f K1 K2 → + jsx h G (↑f) (K1.ⓤ{I}) (K2.ⓧ) +| jsx_pair: ∀f,I,K1,K2,V. G ⊢ ⬈*[h,V] 𝐒⦃K2⦄ → + jsx h G f K1 K2 → jsx h G (↑f) (K1.ⓑ{I}V) (K2.ⓧ) +. + +interpretation + "strong normalization for unbound parallel rt-transition (compatibility)" + 'ToPRedTySNStrong h f G L1 L2 = (jsx h G f L1 L2). + +(* Basic inversion lemmas ***************************************************) + +fact jsx_inv_atom_sn_aux (h) (G): + ∀g,L1,L2. G ⊢ L1 ⊒[h,g] L2 → L1 = ⋆ → L2 = ⋆. +#h #G #g #L1 #L2 * -g -L1 -L2 // +[ #f #I #K1 #K2 #_ #H destruct +| #f #I #K1 #K2 #_ #H destruct +| #f #I #K1 #K2 #V #_ #_ #H destruct +] +qed-. + +lemma jsx_inv_atom_sn (h) (G): ∀g,L2. G ⊢ ⋆ ⊒[h,g] L2 → L2 = ⋆. +/2 width=7 by jsx_inv_atom_sn_aux/ qed-. + +fact jsx_inv_push_sn_aux (h) (G): + ∀g,L1,L2. G ⊢ L1 ⊒[h,g] L2 → + ∀f,I,K1. g = ⫯f → L1 = K1.ⓘ{I} → + ∃∃K2. G ⊢ K1 ⊒[h,f] K2 & L2 = K2.ⓘ{I}. +#h #G #g #L1 #L2 * -g -L1 -L2 +[ #f #g #J #L1 #_ #H destruct +| #f #I #K1 #K2 #HK12 #g #J #L1 #H1 #H2 destruct + <(injective_push … H1) -g /2 width=3 by ex2_intro/ +| #f #I #K1 #K2 #_ #g #J #L1 #H + elim (discr_next_push … H) +| #f #I #K1 #K2 #V #_ #_ #g #J #L1 #H + elim (discr_next_push … H) +] +qed-. + +lemma jsx_inv_push_sn (h) (G): + ∀f,I,K1,L2. G ⊢ K1.ⓘ{I} ⊒[h,⫯f] L2 → + ∃∃K2. G ⊢ K1 ⊒[h,f] K2 & L2 = K2.ⓘ{I}. +/2 width=5 by jsx_inv_push_sn_aux/ qed-. + +fact jsx_inv_unit_sn_aux (h) (G): + ∀g,L1,L2. G ⊢ L1 ⊒[h,g] L2 → + ∀f,I,K1. g = ↑f → L1 = K1.ⓤ{I} → + ∃∃K2. G ⊢ K1 ⊒[h,f] K2 & L2 = K2.ⓧ. +#h #G #g #L1 #L2 * -g -L1 -L2 +[ #f #g #J #L1 #_ #H destruct +| #f #I #K1 #K2 #_ #g #J #L1 #H + elim (discr_push_next … H) +| #f #I #K1 #K2 #HK12 #g #J #L1 #H1 #H2 destruct + <(injective_next … H1) -g /2 width=3 by ex2_intro/ +| #f #I #K1 #K2 #V #_ #_ #g #J #L1 #_ #H destruct +] +qed-. + +lemma jsx_inv_unit_sn (h) (G): + ∀f,I,K1,L2. G ⊢ K1.ⓤ{I} ⊒[h,↑f] L2 → + ∃∃K2. G ⊢ K1 ⊒[h,f] K2 & L2 = K2.ⓧ. +/2 width=6 by jsx_inv_unit_sn_aux/ qed-. + +fact jsx_inv_pair_sn_aux (h) (G): + ∀g,L1,L2. G ⊢ L1 ⊒[h,g] L2 → + ∀f,I,K1,V. g = ↑f → L1 = K1.ⓑ{I}V → + ∃∃K2. G ⊢ ⬈*[h,V] 𝐒⦃K2⦄ & G ⊢ K1 ⊒[h,f] K2 & L2 = K2.ⓧ. +#h #G #g #L1 #L2 * -g -L1 -L2 +[ #f #g #J #L1 #W #_ #H destruct +| #f #I #K1 #K2 #_ #g #J #L1 #W #H + elim (discr_push_next … H) +| #f #I #K1 #K2 #_ #g #J #L1 #W #_ #H destruct +| #f #I #K1 #K2 #V #HV #HK12 #g #J #L1 #W #H1 #H2 destruct + <(injective_next … H1) -g /2 width=4 by ex3_intro/ +] +qed-. + +(* Basic_2A1: uses: lcosx_inv_pair *) +lemma jsx_inv_pair_sn (h) (G): + ∀f,I,K1,L2,V. G ⊢ K1.ⓑ{I}V ⊒[h,↑f] L2 → + ∃∃K2. G ⊢ ⬈*[h,V] 𝐒⦃K2⦄ & G ⊢ K1 ⊒[h,f] K2 & L2 = K2.ⓧ. +/2 width=6 by jsx_inv_pair_sn_aux/ qed-. + +(* Advanced inversion lemmas ************************************************) + +lemma jsx_inv_pair_sn_gen (h) (G): ∀g,I,K1,L2,V. G ⊢ K1.ⓑ{I}V ⊒[h,g] L2 → + ∨∨ ∃∃f,K2. G ⊢ K1 ⊒[h,f] K2 & g = ⫯f & L2 = K2.ⓑ{I}V + | ∃∃f,K2. G ⊢ ⬈*[h,V] 𝐒⦃K2⦄ & G ⊢ K1 ⊒[h,f] K2 & g = ↑f & L2 = K2.ⓧ. +#h #G #g #I #K1 #L2 #V #H +elim (pn_split g) * #f #Hf destruct +[ elim (jsx_inv_push_sn … H) -H /3 width=5 by ex3_2_intro, or_introl/ +| elim (jsx_inv_pair_sn … H) -H /3 width=6 by ex4_2_intro, or_intror/ +] +qed-. + +(* Advanced forward lemmas **************************************************) + +lemma jsx_fwd_bind_sn (h) (G): + ∀g,I1,K1,L2. G ⊢ K1.ⓘ{I1} ⊒[h,g] L2 → + ∃∃I2,K2. G ⊢ K1 ⊒[h,⫱g] K2 & L2 = K2.ⓘ{I2}. +#h #G #g #I1 #K1 #L2 +elim (pn_split g) * #f #Hf destruct +[ #H elim (jsx_inv_push_sn … H) -H +| cases I1 -I1 #I1 + [ #H elim (jsx_inv_unit_sn … H) -H + | #V #H elim (jsx_inv_pair_sn … H) -H + ] +] +/2 width=4 by ex2_2_intro/ +qed-. + +(* Basic properties *********************************************************) + +lemma jsx_eq_repl_back (h) (G): ∀L1,L2. eq_repl_back … (λf. G ⊢ L1 ⊒[h,f] L2). +#h #G #L1 #L2 #f1 #H elim H -L1 -L2 -f1 // +[ #f #I #L1 #L2 #_ #IH #x #H + elim (eq_inv_px … H) -H /3 width=3 by jsx_push/ +| #f #I #L1 #L2 #_ #IH #x #H + elim (eq_inv_nx … H) -H /3 width=3 by jsx_unit/ +| #f #I #L1 #L2 #V #HV #_ #IH #x #H + elim (eq_inv_nx … H) -H /3 width=3 by jsx_pair/ +] +qed-. + +lemma jsx_eq_repl_fwd (h) (G): ∀L1,L2. eq_repl_fwd … (λf. G ⊢ L1 ⊒[h,f] L2). +#h #G #L1 #L2 @eq_repl_sym /2 width=3 by jsx_eq_repl_back/ +qed-. + +(* Advanced properties ******************************************************) + +(* Basic_2A1: uses: lcosx_O *) +lemma jsx_refl (h) (G): ∀f. 𝐈⦃f⦄ → reflexive … (jsx h G f). +#h #G #f #Hf #L elim L -L +/3 width=3 by jsx_eq_repl_back, jsx_push, eq_push_inv_isid/ +qed. + +(* Basic_2A1: removed theorems 2: + lcosx_drop_trans_lt lcosx_inv_succ +*)