X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Fstatic%2Flfeq.ma;h=f7375afbc829971da4837150469b46705fab7f0d;hb=5c186c72f508da0849058afeecc6877cd9ed6303;hp=286a108eec99552dcfb7f9fb7a72e29a5ee70e49;hpb=c44a7c4d35c1bb9651c3596519d8262e52e90ff4;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/lfeq.ma b/matita/matita/contribs/lambdadelta/basic_2/static/lfeq.ma index 286a108ee..f7375afbc 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/lfeq.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/lfeq.ma @@ -12,7 +12,7 @@ (* *) (**************************************************************************) -include "basic_2/notation/relations/lazyeqsn_3.ma". +include "basic_2/notation/relations/ideqsn_3.ma". include "basic_2/static/lfxs.ma". (* SYNTACTIC EQUIVALENCE FOR LOCAL ENVIRONMENTS ON REFERRED ENTRIES *********) @@ -23,22 +23,15 @@ definition lfeq: relation3 term lenv lenv ≝ interpretation "syntactic equivalence on referred entries (local environment)" - 'LazyEqSn T L1 L2 = (lfeq T L1 L2). + 'IdEqSn T L1 L2 = (lfeq T L1 L2). +(* Note: "lfeq_transitive R" is equivalent to "lfxs_transitive ceq R R" *) (* Basic_2A1: uses: lleq_transitive *) definition lfeq_transitive: predicate (relation3 lenv term term) ≝ λR. ∀L2,T1,T2. R L2 T1 T2 → ∀L1. L1 ≡[T1] L2 → R L1 T1 T2. -(* Basic_properties *********************************************************) - -lemma lfxs_transitive_lfeq: ∀R. lfxs_transitive ceq R R → lfeq_transitive R. -/2 width=5 by/ qed. - (* Basic inversion lemmas ***************************************************) -lemma lfeq_transitive_inv_lfxs: ∀R. lfeq_transitive R → lfxs_transitive ceq R R. -/2 width=3 by/ qed-. - lemma lfeq_inv_bind: ∀p,I,L1,L2,V,T. L1 ≡[ⓑ{p,I}V.T] L2 → ∧∧ L1 ≡[V] L2 & L1.ⓑ{I}V ≡[T] L2.ⓑ{I}V. /2 width=2 by lfxs_inv_bind/ qed-. @@ -63,11 +56,11 @@ elim (lfxs_inv_zero_pair_dx … H) -H #K1 #X #HK12 #HX #H destruct /2 width=3 by ex2_intro/ qed-. -lemma lfeq_inv_lref_bind_sn: ∀I1,K1,L2,i. K1.ⓘ{I1} ≡[#⫯i] L2 → +lemma lfeq_inv_lref_bind_sn: ∀I1,K1,L2,i. K1.ⓘ{I1} ≡[#↑i] L2 → ∃∃I2,K2. K1 ≡[#i] K2 & L2 = K2.ⓘ{I2}. /2 width=2 by lfxs_inv_lref_bind_sn/ qed-. -lemma lfeq_inv_lref_bind_dx: ∀I2,K2,L1,i. L1 ≡[#⫯i] K2.ⓘ{I2} → +lemma lfeq_inv_lref_bind_dx: ∀I2,K2,L1,i. L1 ≡[#↑i] K2.ⓘ{I2} → ∃∃I1,K1. K1 ≡[#i] K2 & L1 = K1.ⓘ{I1}. /2 width=2 by lfxs_inv_lref_bind_dx/ qed-. @@ -81,6 +74,32 @@ lemma lfeq_fwd_lfxs: ∀R. c_reflexive … R → /4 width=7 by lexs_co, cext2_co, ex2_intro/ qed-. +(* Basic_properties *********************************************************) + +lemma frees_lfeq_conf: ∀f,L1,T. L1 ⊢ 𝐅*⦃T⦄ ≘ f → + ∀L2. L1 ≡[T] L2 → L2 ⊢ 𝐅*⦃T⦄ ≘ f. +#f #L1 #T #H elim H -f -L1 -T +[ /2 width=3 by frees_sort/ +| #f #i #Hf #L2 #H2 + >(lfxs_inv_atom_sn … H2) -L2 + /2 width=1 by frees_atom/ +| #f #I #L1 #V1 #_ #IH #Y #H2 + elim (lfeq_inv_zero_pair_sn … H2) -H2 #L2 #HL12 #H destruct + /3 width=1 by frees_pair/ +| #f #I #L1 #Hf #Y #H2 + elim (lfxs_inv_zero_unit_sn … H2) -H2 #g #L2 #_ #_ #H destruct + /2 width=1 by frees_unit/ +| #f #I #L1 #i #_ #IH #Y #H2 + elim (lfeq_inv_lref_bind_sn … H2) -H2 #J #L2 #HL12 #H destruct + /3 width=1 by frees_lref/ +| /2 width=1 by frees_gref/ +| #f1V #f1T #f1 #p #I #L1 #V1 #T1 #_ #_ #Hf1 #IHV #IHT #L2 #H2 + elim (lfeq_inv_bind … H2) -H2 /3 width=5 by frees_bind/ +| #f1V #f1T #f1 #I #L1 #V1 #T1 #_ #_ #Hf1 #IHV #IHT #L2 #H2 + elim (lfeq_inv_flat … H2) -H2 /3 width=5 by frees_flat/ +] +qed-. + (* Basic_2A1: removed theorems 10: lleq_ind lleq_fwd_lref lleq_fwd_drop_sn lleq_fwd_drop_dx