X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Fsubstitution%2Fcpys.ma;h=10c59120d9cd5899bfeefc26c1aed6845008c27a;hb=e4be4188d549da5fde54cdc37a6fb4eb2469c15b;hp=594c34062abd5c4f6da806a5bcc0e7a783d1885c;hpb=f7b7b9a4666ec1e50c64a20fb89bd2fc49f3870f;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys.ma b/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys.ma index 594c34062..10c59120d 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys.ma @@ -12,7 +12,7 @@ (* *) (**************************************************************************) -include "basic_2/notation/relations/extpsubststar_6.ma". +include "basic_2/notation/relations/psubststar_6.ma". include "basic_2/relocation/cpy.ma". (* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************) @@ -21,35 +21,35 @@ definition cpys: ynat → ynat → relation4 genv lenv term term ≝ λd,e,G. LTC … (cpy d e G). interpretation "context-sensitive extended multiple substritution (term)" - 'ExtPSubstStar G L T1 d e T2 = (cpys d e G L T1 T2). + 'PSubstStar G L T1 d e T2 = (cpys d e G L T1 T2). (* Basic eliminators ********************************************************) lemma cpys_ind: ∀G,L,T1,d,e. ∀R:predicate term. R T1 → - (∀T,T2. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T → ⦃G, L⦄ ⊢ T ▶×[d, e] T2 → R T → R T2) → - ∀T2. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → R T2. + (∀T,T2. ⦃G, L⦄ ⊢ T1 ▶*[d, e] T → ⦃G, L⦄ ⊢ T ▶[d, e] T2 → R T → R T2) → + ∀T2. ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 → R T2. #G #L #T1 #d #e #R #HT1 #IHT1 #T2 #HT12 @(TC_star_ind … HT1 IHT1 … HT12) // qed-. lemma cpys_ind_dx: ∀G,L,T2,d,e. ∀R:predicate term. R T2 → - (∀T1,T. ⦃G, L⦄ ⊢ T1 ▶×[d, e] T → ⦃G, L⦄ ⊢ T ▶*×[d, e] T2 → R T → R T1) → - ∀T1. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → R T1. + (∀T1,T. ⦃G, L⦄ ⊢ T1 ▶[d, e] T → ⦃G, L⦄ ⊢ T ▶*[d, e] T2 → R T → R T1) → + ∀T1. ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 → R T1. #G #L #T2 #d #e #R #HT2 #IHT2 #T1 #HT12 @(TC_star_ind_dx … HT2 IHT2 … HT12) // qed-. (* Basic properties *********************************************************) -lemma cpy_cpys: ∀G,L,T1,T2,d,e. ⦃G, L⦄ ⊢ T1 ▶×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2. +lemma cpy_cpys: ∀G,L,T1,T2,d,e. ⦃G, L⦄ ⊢ T1 ▶[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2. /2 width=1 by inj/ qed. lemma cpys_strap1: ∀G,L,T1,T,T2,d,e. - ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T → ⦃G, L⦄ ⊢ T ▶×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2. + ⦃G, L⦄ ⊢ T1 ▶*[d, e] T → ⦃G, L⦄ ⊢ T ▶[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2. normalize /2 width=3 by step/ qed-. lemma cpys_strap2: ∀G,L,T1,T,T2,d,e. - ⦃G, L⦄ ⊢ T1 ▶×[d, e] T → ⦃G, L⦄ ⊢ T ▶*×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2. + ⦃G, L⦄ ⊢ T1 ▶[d, e] T → ⦃G, L⦄ ⊢ T ▶*[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2. normalize /2 width=3 by TC_strap/ qed-. lemma lsuby_cpys_trans: ∀G,d,e. lsub_trans … (cpys d e G) (lsuby d e). @@ -59,80 +59,92 @@ qed-. lemma cpys_refl: ∀G,L,d,e. reflexive … (cpys d e G L). /2 width=1 by cpy_cpys/ qed. -lemma cpys_bind: ∀G,L,V1,V2,d,e. ⦃G, L⦄ ⊢ V1 ▶*×[d, e] V2 → - ∀I,T1,T2. ⦃G, L.ⓑ{I}V2⦄ ⊢ T1 ▶*×[⫯d, e] T2 → - ∀a. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*×[d, e] ⓑ{a,I}V2.T2. +lemma cpys_bind: ∀G,L,V1,V2,d,e. ⦃G, L⦄ ⊢ V1 ▶*[d, e] V2 → + ∀I,T1,T2. ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶*[⫯d, e] T2 → + ∀a. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*[d, e] ⓑ{a,I}V2.T2. #G #L #V1 #V2 #d #e #HV12 @(cpys_ind … HV12) -V2 [ #I #T1 #T2 #HT12 @(cpys_ind … HT12) -T2 /3 width=5 by cpys_strap1, cpy_bind/ -| #V #V2 #_ #HV2 #IHV1 #I #T1 #T2 #HT12 #a - lapply (lsuby_cpys_trans … HT12 (L.ⓑ{I}V) ?) -HT12 - /3 width=5 by cpys_strap1, cpy_bind, lsuby_succ/ +| /3 width=5 by cpys_strap1, cpy_bind/ ] qed. -lemma cpys_flat: ∀G,L,V1,V2,d,e. ⦃G, L⦄ ⊢ V1 ▶*×[d, e] V2 → - ∀T1,T2. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → - ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*×[d, e] ⓕ{I}V2.T2. +lemma cpys_flat: ∀G,L,V1,V2,d,e. ⦃G, L⦄ ⊢ V1 ▶*[d, e] V2 → + ∀T1,T2. ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 → + ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*[d, e] ⓕ{I}V2.T2. #G #L #V1 #V2 #d #e #HV12 @(cpys_ind … HV12) -V2 [ #T1 #T2 #HT12 @(cpys_ind … HT12) -T2 /3 width=5 by cpys_strap1, cpy_flat/ | /3 width=5 by cpys_strap1, cpy_flat/ qed. -lemma cpys_weak: ∀G,L,T1,T2,d1,e1. ⦃G, L⦄ ⊢ T1 ▶*×[d1, e1] T2 → +lemma cpys_weak: ∀G,L,T1,T2,d1,e1. ⦃G, L⦄ ⊢ T1 ▶*[d1, e1] T2 → ∀d2,e2. d2 ≤ d1 → d1 + e1 ≤ d2 + e2 → - ⦃G, L⦄ ⊢ T1 ▶*×[d2, e2] T2. + ⦃G, L⦄ ⊢ T1 ▶*[d2, e2] T2. #G #L #T1 #T2 #d1 #e1 #H #d1 #d2 #Hd21 #Hde12 @(cpys_ind … H) -T2 /3 width=7 by cpys_strap1, cpy_weak/ qed-. lemma cpys_weak_top: ∀G,L,T1,T2,d,e. - ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*×[d, |L| - d] T2. + ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*[d, |L| - d] T2. #G #L #T1 #T2 #d #e #H @(cpys_ind … H) -T2 /3 width=4 by cpys_strap1, cpy_weak_top/ qed-. lemma cpys_weak_full: ∀G,L,T1,T2,d,e. - ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*×[0, |L|] T2. + ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*[0, |L|] T2. #G #L #T1 #T2 #d #e #H @(cpys_ind … H) -T2 /3 width=5 by cpys_strap1, cpy_weak_full/ qed-. -lemma cpys_append: ∀G,d,e. l_appendable_sn … (cpys d e G). -#G #d #e #K #T1 #T2 #H @(cpys_ind … H) -T2 -/3 width=3 by cpys_strap1, cpy_append/ +(* Basic forward lemmas *****************************************************) + +lemma cpys_fwd_up: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*[dt, et] U2 → + ∀T1,d,e. ⇧[d, e] T1 ≡ U1 → + d ≤ dt → d + e ≤ dt + et → + ∃∃T2. ⦃G, L⦄ ⊢ U1 ▶*[d+e, dt+et-(d+e)] U2 & ⇧[d, e] T2 ≡ U2. +#G #L #U1 #U2 #dt #et #H #T1 #d #e #HTU1 #Hddt #Hdedet @(cpys_ind … H) -U2 +[ /2 width=3 by ex2_intro/ +| -HTU1 #U #U2 #_ #HU2 * #T #HU1 #HTU + elim (cpy_fwd_up … HU2 … HTU) -HU2 -HTU /3 width=3 by cpys_strap1, ex2_intro/ +] +qed-. + +lemma cpys_fwd_tw: ∀G,L,T1,T2,d,e. ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 → ♯{T1} ≤ ♯{T2}. +#G #L #T1 #T2 #d #e #H @(cpys_ind … H) -T2 // +#T #T2 #_ #HT2 #IHT1 lapply (cpy_fwd_tw … HT2) -HT2 +/2 width=3 by transitive_le/ qed-. (* Basic inversion lemmas ***************************************************) (* Note: this can be derived from cpys_inv_atom1 *) -lemma cpys_inv_sort1: ∀G,L,T2,k,d,e. ⦃G, L⦄ ⊢ ⋆k ▶*×[d, e] T2 → T2 = ⋆k. +lemma cpys_inv_sort1: ∀G,L,T2,k,d,e. ⦃G, L⦄ ⊢ ⋆k ▶*[d, e] T2 → T2 = ⋆k. #G #L #T2 #k #d #e #H @(cpys_ind … H) -T2 // #T #T2 #_ #HT2 #IHT1 destruct >(cpy_inv_sort1 … HT2) -HT2 // qed-. (* Note: this can be derived from cpys_inv_atom1 *) -lemma cpys_inv_gref1: ∀G,L,T2,p,d,e. ⦃G, L⦄ ⊢ §p ▶*×[d, e] T2 → T2 = §p. +lemma cpys_inv_gref1: ∀G,L,T2,p,d,e. ⦃G, L⦄ ⊢ §p ▶*[d, e] T2 → T2 = §p. #G #L #T2 #p #d #e #H @(cpys_ind … H) -T2 // #T #T2 #_ #HT2 #IHT1 destruct >(cpy_inv_gref1 … HT2) -HT2 // qed-. -lemma cpys_inv_bind1: ∀a,I,G,L,V1,T1,U2,d,e. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*×[d, e] U2 → - ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*×[d, e] V2 & - ⦃G, L.ⓑ{I}V2⦄ ⊢ T1 ▶*×[⫯d, e] T2 & +lemma cpys_inv_bind1: ∀a,I,G,L,V1,T1,U2,d,e. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*[d, e] U2 → + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*[d, e] V2 & + ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶*[⫯d, e] T2 & U2 = ⓑ{a,I}V2.T2. #a #I #G #L #V1 #T1 #U2 #d #e #H @(cpys_ind … H) -U2 [ /2 width=5 by ex3_2_intro/ | #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct elim (cpy_inv_bind1 … HU2) -HU2 #V2 #T2 #HV2 #HT2 #H - lapply (lsuby_cpys_trans … HT1 (L.ⓑ{I}V2) ?) -HT1 + lapply (lsuby_cpy_trans … HT2 (L.ⓑ{I}V1) ?) -HT2 /3 width=5 by cpys_strap1, lsuby_succ, ex3_2_intro/ ] qed-. -lemma cpys_inv_flat1: ∀I,G,L,V1,T1,U2,d,e. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*×[d, e] U2 → - ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*×[d, e] V2 & ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 & +lemma cpys_inv_flat1: ∀I,G,L,V1,T1,U2,d,e. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*[d, e] U2 → + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*[d, e] V2 & ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 & U2 = ⓕ{I}V2.T2. #I #G #L #V1 #T1 #U2 #d #e #H @(cpys_ind … H) -U2 [ /2 width=5 by ex3_2_intro/ @@ -142,25 +154,13 @@ lemma cpys_inv_flat1: ∀I,G,L,V1,T1,U2,d,e. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*×[d ] qed-. -lemma cpys_inv_refl_O2: ∀G,L,T1,T2,d. ⦃G, L⦄ ⊢ T1 ▶*×[d, 0] T2 → T1 = T2. +lemma cpys_inv_refl_O2: ∀G,L,T1,T2,d. ⦃G, L⦄ ⊢ T1 ▶*[d, 0] T2 → T1 = T2. #G #L #T1 #T2 #d #H @(cpys_ind … H) -T2 // #T #T2 #_ #HT2 #IHT1 <(cpy_inv_refl_O2 … HT2) -HT2 // qed-. -(* Basic forward lemmas *****************************************************) - -lemma cpys_fwd_tw: ∀G,L,T1,T2,d,e. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → ♯{T1} ≤ ♯{T2}. -#G #L #T1 #T2 #d #e #H @(cpys_ind … H) -T2 // -#T #T2 #_ #HT2 #IHT1 lapply (cpy_fwd_tw … HT2) -HT2 -/2 width=3 by transitive_le/ -qed-. - -lemma cpys_fwd_shift1: ∀G,L,L1,T1,T,d,e. ⦃G, L⦄ ⊢ L1 @@ T1 ▶*×[d, e] T → - ∃∃L2,T2. |L1| = |L2| & T = L2 @@ T2. -#G #L #L1 #T1 #T #d #e #H @(cpys_ind … H) -T -[ /2 width=4 by ex2_2_intro/ -| #T #X #_ #HX * #L0 #T0 #HL10 #H destruct - elim (cpy_fwd_shift1 … HX) -HX #L2 #T2 #HL02 #H destruct - /2 width=4 by ex2_2_intro/ -] +lemma cpys_inv_lift1_eq: ∀G,L,U1,U2. ∀d,e:nat. + ⦃G, L⦄ ⊢ U1 ▶*[d, e] U2 → ∀T1. ⇧[d, e] T1 ≡ U1 → U1 = U2. +#G #L #U1 #U2 #d #e #H #T1 #HTU1 @(cpys_ind … H) -U2 +/2 width=7 by cpy_inv_lift1_eq/ qed-.