X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fground_1%2Fext%2Farith.ma;fp=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fground_1%2Fext%2Farith.ma;h=0000000000000000000000000000000000000000;hb=d2545ffd201b1aa49887313791386add78fa8603;hp=724a34747372f80cc491fbc63a85f22a9d59db06;hpb=57ae1762497a5f3ea75740e2908e04adb8642cc2;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/ground_1/ext/arith.ma b/matita/matita/contribs/lambdadelta/ground_1/ext/arith.ma deleted file mode 100644 index 724a34747..000000000 --- a/matita/matita/contribs/lambdadelta/ground_1/ext/arith.ma +++ /dev/null @@ -1,592 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -(* This file was automatically generated: do not edit *********************) - -include "ground_1/preamble.ma". - -lemma nat_dec: - \forall (n1: nat).(\forall (n2: nat).(or (eq nat n1 n2) ((eq nat n1 n2) \to -(\forall (P: Prop).P)))) -\def - \lambda (n1: nat).(nat_ind (\lambda (n: nat).(\forall (n2: nat).(or (eq nat -n n2) ((eq nat n n2) \to (\forall (P: Prop).P))))) (\lambda (n2: -nat).(nat_ind (\lambda (n: nat).(or (eq nat O n) ((eq nat O n) \to (\forall -(P: Prop).P)))) (or_introl (eq nat O O) ((eq nat O O) \to (\forall (P: -Prop).P)) (refl_equal nat O)) (\lambda (n: nat).(\lambda (_: (or (eq nat O n) -((eq nat O n) \to (\forall (P: Prop).P)))).(or_intror (eq nat O (S n)) ((eq -nat O (S n)) \to (\forall (P: Prop).P)) (\lambda (H0: (eq nat O (S -n))).(\lambda (P: Prop).(let H1 \def (eq_ind nat O (\lambda (ee: nat).(match -ee with [O \Rightarrow True | (S _) \Rightarrow False])) I (S n) H0) in -(False_ind P H1))))))) n2)) (\lambda (n: nat).(\lambda (H: ((\forall (n2: -nat).(or (eq nat n n2) ((eq nat n n2) \to (\forall (P: Prop).P)))))).(\lambda -(n2: nat).(nat_ind (\lambda (n0: nat).(or (eq nat (S n) n0) ((eq nat (S n) -n0) \to (\forall (P: Prop).P)))) (or_intror (eq nat (S n) O) ((eq nat (S n) -O) \to (\forall (P: Prop).P)) (\lambda (H0: (eq nat (S n) O)).(\lambda (P: -Prop).(let H1 \def (eq_ind nat (S n) (\lambda (ee: nat).(match ee with [O -\Rightarrow False | (S _) \Rightarrow True])) I O H0) in (False_ind P H1))))) -(\lambda (n0: nat).(\lambda (H0: (or (eq nat (S n) n0) ((eq nat (S n) n0) \to -(\forall (P: Prop).P)))).(or_ind (eq nat n n0) ((eq nat n n0) \to (\forall -(P: Prop).P)) (or (eq nat (S n) (S n0)) ((eq nat (S n) (S n0)) \to (\forall -(P: Prop).P))) (\lambda (H1: (eq nat n n0)).(let H2 \def (eq_ind_r nat n0 -(\lambda (n3: nat).(or (eq nat (S n) n3) ((eq nat (S n) n3) \to (\forall (P: -Prop).P)))) H0 n H1) in (eq_ind nat n (\lambda (n3: nat).(or (eq nat (S n) (S -n3)) ((eq nat (S n) (S n3)) \to (\forall (P: Prop).P)))) (or_introl (eq nat -(S n) (S n)) ((eq nat (S n) (S n)) \to (\forall (P: Prop).P)) (refl_equal nat -(S n))) n0 H1))) (\lambda (H1: (((eq nat n n0) \to (\forall (P: -Prop).P)))).(or_intror (eq nat (S n) (S n0)) ((eq nat (S n) (S n0)) \to -(\forall (P: Prop).P)) (\lambda (H2: (eq nat (S n) (S n0))).(\lambda (P: -Prop).(let H3 \def (f_equal nat nat (\lambda (e: nat).(match e with [O -\Rightarrow n | (S n3) \Rightarrow n3])) (S n) (S n0) H2) in (let H4 \def -(eq_ind_r nat n0 (\lambda (n3: nat).((eq nat n n3) \to (\forall (P0: -Prop).P0))) H1 n H3) in (let H5 \def (eq_ind_r nat n0 (\lambda (n3: nat).(or -(eq nat (S n) n3) ((eq nat (S n) n3) \to (\forall (P0: Prop).P0)))) H0 n H3) -in (H4 (refl_equal nat n) P)))))))) (H n0)))) n2)))) n1). - -lemma simpl_plus_r: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((eq nat (plus m n) -(plus p n)) \to (eq nat m p)))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (eq nat -(plus m n) (plus p n))).(simpl_plus_l n m p (eq_ind_r nat (plus m n) (\lambda -(n0: nat).(eq nat n0 (plus n p))) (eq_ind_r nat (plus p n) (\lambda (n0: -nat).(eq nat n0 (plus n p))) (plus_sym p n) (plus m n) H) (plus n m) -(plus_sym n m)))))). - -lemma minus_Sx_Sy: - \forall (x: nat).(\forall (y: nat).(eq nat (minus (S x) (S y)) (minus x y))) -\def - \lambda (x: nat).(\lambda (y: nat).(refl_equal nat (minus x y))). - -lemma minus_plus_r: - \forall (m: nat).(\forall (n: nat).(eq nat (minus (plus m n) n) m)) -\def - \lambda (m: nat).(\lambda (n: nat).(eq_ind_r nat (plus n m) (\lambda (n0: -nat).(eq nat (minus n0 n) m)) (minus_plus n m) (plus m n) (plus_sym m n))). - -lemma plus_permute_2_in_3: - \forall (x: nat).(\forall (y: nat).(\forall (z: nat).(eq nat (plus (plus x -y) z) (plus (plus x z) y)))) -\def - \lambda (x: nat).(\lambda (y: nat).(\lambda (z: nat).(eq_ind_r nat (plus x -(plus y z)) (\lambda (n: nat).(eq nat n (plus (plus x z) y))) (eq_ind_r nat -(plus z y) (\lambda (n: nat).(eq nat (plus x n) (plus (plus x z) y))) (eq_ind -nat (plus (plus x z) y) (\lambda (n: nat).(eq nat n (plus (plus x z) y))) -(refl_equal nat (plus (plus x z) y)) (plus x (plus z y)) (plus_assoc_r x z -y)) (plus y z) (plus_sym y z)) (plus (plus x y) z) (plus_assoc_r x y z)))). - -lemma plus_permute_2_in_3_assoc: - \forall (n: nat).(\forall (h: nat).(\forall (k: nat).(eq nat (plus (plus n -h) k) (plus n (plus k h))))) -\def - \lambda (n: nat).(\lambda (h: nat).(\lambda (k: nat).(eq_ind_r nat (plus -(plus n k) h) (\lambda (n0: nat).(eq nat n0 (plus n (plus k h)))) (eq_ind_r -nat (plus (plus n k) h) (\lambda (n0: nat).(eq nat (plus (plus n k) h) n0)) -(refl_equal nat (plus (plus n k) h)) (plus n (plus k h)) (plus_assoc_l n k -h)) (plus (plus n h) k) (plus_permute_2_in_3 n h k)))). - -lemma plus_O: - \forall (x: nat).(\forall (y: nat).((eq nat (plus x y) O) \to (land (eq nat -x O) (eq nat y O)))) -\def - \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((eq nat (plus -n y) O) \to (land (eq nat n O) (eq nat y O))))) (\lambda (y: nat).(\lambda -(H: (eq nat (plus O y) O)).(conj (eq nat O O) (eq nat y O) (refl_equal nat O) -H))) (\lambda (n: nat).(\lambda (_: ((\forall (y: nat).((eq nat (plus n y) O) -\to (land (eq nat n O) (eq nat y O)))))).(\lambda (y: nat).(\lambda (H0: (eq -nat (plus (S n) y) O)).(let H1 \def (match H0 with [refl_equal \Rightarrow -(\lambda (H1: (eq nat (plus (S n) y) O)).(let H2 \def (eq_ind nat (plus (S n) -y) (\lambda (e: nat).(match e with [O \Rightarrow False | (S _) \Rightarrow -True])) I O H1) in (False_ind (land (eq nat (S n) O) (eq nat y O)) H2)))]) in -(H1 (refl_equal nat O))))))) x). - -lemma minus_Sx_SO: - \forall (x: nat).(eq nat (minus (S x) (S O)) x) -\def - \lambda (x: nat).(eq_ind nat x (\lambda (n: nat).(eq nat n x)) (refl_equal -nat x) (minus x O) (minus_n_O x)). - -lemma nat_dec_neg: - \forall (i: nat).(\forall (j: nat).(or (not (eq nat i j)) (eq nat i j))) -\def - \lambda (i: nat).(nat_ind (\lambda (n: nat).(\forall (j: nat).(or (not (eq -nat n j)) (eq nat n j)))) (\lambda (j: nat).(nat_ind (\lambda (n: nat).(or -(not (eq nat O n)) (eq nat O n))) (or_intror (not (eq nat O O)) (eq nat O O) -(refl_equal nat O)) (\lambda (n: nat).(\lambda (_: (or (not (eq nat O n)) (eq -nat O n))).(or_introl (not (eq nat O (S n))) (eq nat O (S n)) (O_S n)))) j)) -(\lambda (n: nat).(\lambda (H: ((\forall (j: nat).(or (not (eq nat n j)) (eq -nat n j))))).(\lambda (j: nat).(nat_ind (\lambda (n0: nat).(or (not (eq nat -(S n) n0)) (eq nat (S n) n0))) (or_introl (not (eq nat (S n) O)) (eq nat (S -n) O) (sym_not_eq nat O (S n) (O_S n))) (\lambda (n0: nat).(\lambda (_: (or -(not (eq nat (S n) n0)) (eq nat (S n) n0))).(or_ind (not (eq nat n n0)) (eq -nat n n0) (or (not (eq nat (S n) (S n0))) (eq nat (S n) (S n0))) (\lambda -(H1: (not (eq nat n n0))).(or_introl (not (eq nat (S n) (S n0))) (eq nat (S -n) (S n0)) (not_eq_S n n0 H1))) (\lambda (H1: (eq nat n n0)).(or_intror (not -(eq nat (S n) (S n0))) (eq nat (S n) (S n0)) (f_equal nat nat S n n0 H1))) (H -n0)))) j)))) i). - -lemma neq_eq_e: - \forall (i: nat).(\forall (j: nat).(\forall (P: Prop).((((not (eq nat i j)) -\to P)) \to ((((eq nat i j) \to P)) \to P)))) -\def - \lambda (i: nat).(\lambda (j: nat).(\lambda (P: Prop).(\lambda (H: (((not -(eq nat i j)) \to P))).(\lambda (H0: (((eq nat i j) \to P))).(let o \def -(nat_dec_neg i j) in (or_ind (not (eq nat i j)) (eq nat i j) P H H0 o)))))). - -lemma le_false: - \forall (m: nat).(\forall (n: nat).(\forall (P: Prop).((le m n) \to ((le (S -n) m) \to P)))) -\def - \lambda (m: nat).(nat_ind (\lambda (n: nat).(\forall (n0: nat).(\forall (P: -Prop).((le n n0) \to ((le (S n0) n) \to P))))) (\lambda (n: nat).(\lambda (P: -Prop).(\lambda (_: (le O n)).(\lambda (H0: (le (S n) O)).(let H1 \def (match -H0 with [le_n \Rightarrow (\lambda (H1: (eq nat (S n) O)).(let H2 \def -(eq_ind nat (S n) (\lambda (e: nat).(match e with [O \Rightarrow False | (S -_) \Rightarrow True])) I O H1) in (False_ind P H2))) | (le_S m0 H1) -\Rightarrow (\lambda (H2: (eq nat (S m0) O)).((let H3 \def (eq_ind nat (S m0) -(\lambda (e: nat).(match e with [O \Rightarrow False | (S _) \Rightarrow -True])) I O H2) in (False_ind ((le (S n) m0) \to P) H3)) H1))]) in (H1 -(refl_equal nat O))))))) (\lambda (n: nat).(\lambda (H: ((\forall (n0: -nat).(\forall (P: Prop).((le n n0) \to ((le (S n0) n) \to P)))))).(\lambda -(n0: nat).(nat_ind (\lambda (n1: nat).(\forall (P: Prop).((le (S n) n1) \to -((le (S n1) (S n)) \to P)))) (\lambda (P: Prop).(\lambda (H0: (le (S n) -O)).(\lambda (_: (le (S O) (S n))).(let H2 \def (match H0 with [le_n -\Rightarrow (\lambda (H2: (eq nat (S n) O)).(let H3 \def (eq_ind nat (S n) -(\lambda (e: nat).(match e with [O \Rightarrow False | (S _) \Rightarrow -True])) I O H2) in (False_ind P H3))) | (le_S m0 H2) \Rightarrow (\lambda -(H3: (eq nat (S m0) O)).((let H4 \def (eq_ind nat (S m0) (\lambda (e: -nat).(match e with [O \Rightarrow False | (S _) \Rightarrow True])) I O H3) -in (False_ind ((le (S n) m0) \to P) H4)) H2))]) in (H2 (refl_equal nat -O)))))) (\lambda (n1: nat).(\lambda (_: ((\forall (P: Prop).((le (S n) n1) -\to ((le (S n1) (S n)) \to P))))).(\lambda (P: Prop).(\lambda (H1: (le (S n) -(S n1))).(\lambda (H2: (le (S (S n1)) (S n))).(H n1 P (le_S_n n n1 H1) -(le_S_n (S n1) n H2))))))) n0)))) m). - -lemma le_Sx_x: - \forall (x: nat).((le (S x) x) \to (\forall (P: Prop).P)) -\def - \lambda (x: nat).(\lambda (H: (le (S x) x)).(\lambda (P: Prop).(let H0 \def -le_Sn_n in (False_ind P (H0 x H))))). - -lemma le_n_pred: - \forall (n: nat).(\forall (m: nat).((le n m) \to (le (pred n) (pred m)))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_ind n (\lambda -(n0: nat).(le (pred n) (pred n0))) (le_n (pred n)) (\lambda (m0: -nat).(\lambda (_: (le n m0)).(\lambda (H1: (le (pred n) (pred m0))).(le_trans -(pred n) (pred m0) m0 H1 (le_pred_n m0))))) m H))). - -lemma minus_le: - \forall (x: nat).(\forall (y: nat).(le (minus x y) x)) -\def - \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).(le (minus n -y) n))) (\lambda (_: nat).(le_O_n O)) (\lambda (n: nat).(\lambda (H: -((\forall (y: nat).(le (minus n y) n)))).(\lambda (y: nat).(nat_ind (\lambda -(n0: nat).(le (minus (S n) n0) (S n))) (le_n (S n)) (\lambda (n0: -nat).(\lambda (_: (le (match n0 with [O \Rightarrow (S n) | (S l) \Rightarrow -(minus n l)]) (S n))).(le_S (minus n n0) n (H n0)))) y)))) x). - -lemma le_plus_minus_sym: - \forall (n: nat).(\forall (m: nat).((le n m) \to (eq nat m (plus (minus m n) -n)))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(eq_ind_r nat -(plus n (minus m n)) (\lambda (n0: nat).(eq nat m n0)) (le_plus_minus n m H) -(plus (minus m n) n) (plus_sym (minus m n) n)))). - -lemma le_minus_minus: - \forall (x: nat).(\forall (y: nat).((le x y) \to (\forall (z: nat).((le y z) -\to (le (minus y x) (minus z x)))))) -\def - \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (le x y)).(\lambda (z: -nat).(\lambda (H0: (le y z)).(simpl_le_plus_l x (minus y x) (minus z x) -(eq_ind_r nat y (\lambda (n: nat).(le n (plus x (minus z x)))) (eq_ind_r nat -z (\lambda (n: nat).(le y n)) H0 (plus x (minus z x)) (le_plus_minus_r x z -(le_trans x y z H H0))) (plus x (minus y x)) (le_plus_minus_r x y H))))))). - -lemma le_minus_plus: - \forall (z: nat).(\forall (x: nat).((le z x) \to (\forall (y: nat).(eq nat -(minus (plus x y) z) (plus (minus x z) y))))) -\def - \lambda (z: nat).(nat_ind (\lambda (n: nat).(\forall (x: nat).((le n x) \to -(\forall (y: nat).(eq nat (minus (plus x y) n) (plus (minus x n) y)))))) -(\lambda (x: nat).(\lambda (H: (le O x)).(let H0 \def (match H with [le_n -\Rightarrow (\lambda (H0: (eq nat O x)).(eq_ind nat O (\lambda (n: -nat).(\forall (y: nat).(eq nat (minus (plus n y) O) (plus (minus n O) y)))) -(\lambda (y: nat).(sym_eq nat (plus (minus O O) y) (minus (plus O y) O) -(minus_n_O (plus O y)))) x H0)) | (le_S m H0) \Rightarrow (\lambda (H1: (eq -nat (S m) x)).(eq_ind nat (S m) (\lambda (n: nat).((le O m) \to (\forall (y: -nat).(eq nat (minus (plus n y) O) (plus (minus n O) y))))) (\lambda (_: (le O -m)).(\lambda (y: nat).(refl_equal nat (plus (minus (S m) O) y)))) x H1 H0))]) -in (H0 (refl_equal nat x))))) (\lambda (z0: nat).(\lambda (H: ((\forall (x: -nat).((le z0 x) \to (\forall (y: nat).(eq nat (minus (plus x y) z0) (plus -(minus x z0) y))))))).(\lambda (x: nat).(nat_ind (\lambda (n: nat).((le (S -z0) n) \to (\forall (y: nat).(eq nat (minus (plus n y) (S z0)) (plus (minus n -(S z0)) y))))) (\lambda (H0: (le (S z0) O)).(\lambda (y: nat).(let H1 \def -(match H0 with [le_n \Rightarrow (\lambda (H1: (eq nat (S z0) O)).(let H2 -\def (eq_ind nat (S z0) (\lambda (e: nat).(match e with [O \Rightarrow False -| (S _) \Rightarrow True])) I O H1) in (False_ind (eq nat (minus (plus O y) -(S z0)) (plus (minus O (S z0)) y)) H2))) | (le_S m H1) \Rightarrow (\lambda -(H2: (eq nat (S m) O)).((let H3 \def (eq_ind nat (S m) (\lambda (e: -nat).(match e with [O \Rightarrow False | (S _) \Rightarrow True])) I O H2) -in (False_ind ((le (S z0) m) \to (eq nat (minus (plus O y) (S z0)) (plus -(minus O (S z0)) y))) H3)) H1))]) in (H1 (refl_equal nat O))))) (\lambda (n: -nat).(\lambda (_: (((le (S z0) n) \to (\forall (y: nat).(eq nat (minus (plus -n y) (S z0)) (plus (minus n (S z0)) y)))))).(\lambda (H1: (le (S z0) (S -n))).(\lambda (y: nat).(H n (le_S_n z0 n H1) y))))) x)))) z). - -lemma le_minus: - \forall (x: nat).(\forall (z: nat).(\forall (y: nat).((le (plus x y) z) \to -(le x (minus z y))))) -\def - \lambda (x: nat).(\lambda (z: nat).(\lambda (y: nat).(\lambda (H: (le (plus -x y) z)).(eq_ind nat (minus (plus x y) y) (\lambda (n: nat).(le n (minus z -y))) (le_minus_minus y (plus x y) (le_plus_r x y) z H) x (minus_plus_r x -y))))). - -lemma le_trans_plus_r: - \forall (x: nat).(\forall (y: nat).(\forall (z: nat).((le (plus x y) z) \to -(le y z)))) -\def - \lambda (x: nat).(\lambda (y: nat).(\lambda (z: nat).(\lambda (H: (le (plus -x y) z)).(le_trans y (plus x y) z (le_plus_r x y) H)))). - -lemma lt_x_O: - \forall (x: nat).((lt x O) \to (\forall (P: Prop).P)) -\def - \lambda (x: nat).(\lambda (H: (le (S x) O)).(\lambda (P: Prop).(let H_y \def -(le_n_O_eq (S x) H) in (let H0 \def (eq_ind nat O (\lambda (ee: nat).(match -ee with [O \Rightarrow True | (S _) \Rightarrow False])) I (S x) H_y) in -(False_ind P H0))))). - -lemma le_gen_S: - \forall (m: nat).(\forall (x: nat).((le (S m) x) \to (ex2 nat (\lambda (n: -nat).(eq nat x (S n))) (\lambda (n: nat).(le m n))))) -\def - \lambda (m: nat).(\lambda (x: nat).(\lambda (H: (le (S m) x)).(let H0 \def -(match H with [le_n \Rightarrow (\lambda (H0: (eq nat (S m) x)).(eq_ind nat -(S m) (\lambda (n: nat).(ex2 nat (\lambda (n0: nat).(eq nat n (S n0))) -(\lambda (n0: nat).(le m n0)))) (ex_intro2 nat (\lambda (n: nat).(eq nat (S -m) (S n))) (\lambda (n: nat).(le m n)) m (refl_equal nat (S m)) (le_n m)) x -H0)) | (le_S m0 H0) \Rightarrow (\lambda (H1: (eq nat (S m0) x)).(eq_ind nat -(S m0) (\lambda (n: nat).((le (S m) m0) \to (ex2 nat (\lambda (n0: nat).(eq -nat n (S n0))) (\lambda (n0: nat).(le m n0))))) (\lambda (H2: (le (S m) -m0)).(ex_intro2 nat (\lambda (n: nat).(eq nat (S m0) (S n))) (\lambda (n: -nat).(le m n)) m0 (refl_equal nat (S m0)) (le_S_n m m0 (le_S (S m) m0 H2)))) -x H1 H0))]) in (H0 (refl_equal nat x))))). - -lemma lt_x_plus_x_Sy: - \forall (x: nat).(\forall (y: nat).(lt x (plus x (S y)))) -\def - \lambda (x: nat).(\lambda (y: nat).(eq_ind_r nat (plus (S y) x) (\lambda (n: -nat).(lt x n)) (le_S_n (S x) (S (plus y x)) (le_n_S (S x) (S (plus y x)) -(le_n_S x (plus y x) (le_plus_r y x)))) (plus x (S y)) (plus_sym x (S y)))). - -lemma simpl_lt_plus_r: - \forall (p: nat).(\forall (n: nat).(\forall (m: nat).((lt (plus n p) (plus m -p)) \to (lt n m)))) -\def - \lambda (p: nat).(\lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt (plus -n p) (plus m p))).(simpl_lt_plus_l n m p (let H0 \def (eq_ind nat (plus n p) -(\lambda (n0: nat).(lt n0 (plus m p))) H (plus p n) (plus_sym n p)) in (let -H1 \def (eq_ind nat (plus m p) (\lambda (n0: nat).(lt (plus p n) n0)) H0 -(plus p m) (plus_sym m p)) in H1)))))). - -lemma minus_x_Sy: - \forall (x: nat).(\forall (y: nat).((lt y x) \to (eq nat (minus x y) (S -(minus x (S y)))))) -\def - \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((lt y n) \to -(eq nat (minus n y) (S (minus n (S y))))))) (\lambda (y: nat).(\lambda (H: -(lt y O)).(let H0 \def (match H with [le_n \Rightarrow (\lambda (H0: (eq nat -(S y) O)).(let H1 \def (eq_ind nat (S y) (\lambda (e: nat).(match e with [O -\Rightarrow False | (S _) \Rightarrow True])) I O H0) in (False_ind (eq nat -(minus O y) (S (minus O (S y)))) H1))) | (le_S m H0) \Rightarrow (\lambda -(H1: (eq nat (S m) O)).((let H2 \def (eq_ind nat (S m) (\lambda (e: -nat).(match e with [O \Rightarrow False | (S _) \Rightarrow True])) I O H1) -in (False_ind ((le (S y) m) \to (eq nat (minus O y) (S (minus O (S y))))) -H2)) H0))]) in (H0 (refl_equal nat O))))) (\lambda (n: nat).(\lambda (H: -((\forall (y: nat).((lt y n) \to (eq nat (minus n y) (S (minus n (S -y)))))))).(\lambda (y: nat).(nat_ind (\lambda (n0: nat).((lt n0 (S n)) \to -(eq nat (minus (S n) n0) (S (minus (S n) (S n0)))))) (\lambda (_: (lt O (S -n))).(eq_ind nat n (\lambda (n0: nat).(eq nat (S n) (S n0))) (refl_equal nat -(S n)) (minus n O) (minus_n_O n))) (\lambda (n0: nat).(\lambda (_: (((lt n0 -(S n)) \to (eq nat (minus (S n) n0) (S (minus (S n) (S n0))))))).(\lambda -(H1: (lt (S n0) (S n))).(let H2 \def (le_S_n (S n0) n H1) in (H n0 H2))))) -y)))) x). - -lemma lt_plus_minus: - \forall (x: nat).(\forall (y: nat).((lt x y) \to (eq nat y (S (plus x (minus -y (S x))))))) -\def - \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (lt x y)).(le_plus_minus (S -x) y H))). - -lemma lt_plus_minus_r: - \forall (x: nat).(\forall (y: nat).((lt x y) \to (eq nat y (S (plus (minus y -(S x)) x))))) -\def - \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (lt x y)).(eq_ind_r nat -(plus x (minus y (S x))) (\lambda (n: nat).(eq nat y (S n))) (lt_plus_minus x -y H) (plus (minus y (S x)) x) (plus_sym (minus y (S x)) x)))). - -lemma minus_x_SO: - \forall (x: nat).((lt O x) \to (eq nat x (S (minus x (S O))))) -\def - \lambda (x: nat).(\lambda (H: (lt O x)).(eq_ind nat (minus x O) (\lambda (n: -nat).(eq nat x n)) (eq_ind nat x (\lambda (n: nat).(eq nat x n)) (refl_equal -nat x) (minus x O) (minus_n_O x)) (S (minus x (S O))) (minus_x_Sy x O H))). - -lemma le_x_pred_y: - \forall (y: nat).(\forall (x: nat).((lt x y) \to (le x (pred y)))) -\def - \lambda (y: nat).(nat_ind (\lambda (n: nat).(\forall (x: nat).((lt x n) \to -(le x (pred n))))) (\lambda (x: nat).(\lambda (H: (lt x O)).(let H0 \def -(match H with [le_n \Rightarrow (\lambda (H0: (eq nat (S x) O)).(let H1 \def -(eq_ind nat (S x) (\lambda (e: nat).(match e with [O \Rightarrow False | (S -_) \Rightarrow True])) I O H0) in (False_ind (le x O) H1))) | (le_S m H0) -\Rightarrow (\lambda (H1: (eq nat (S m) O)).((let H2 \def (eq_ind nat (S m) -(\lambda (e: nat).(match e with [O \Rightarrow False | (S _) \Rightarrow -True])) I O H1) in (False_ind ((le (S x) m) \to (le x O)) H2)) H0))]) in (H0 -(refl_equal nat O))))) (\lambda (n: nat).(\lambda (_: ((\forall (x: nat).((lt -x n) \to (le x (pred n)))))).(\lambda (x: nat).(\lambda (H0: (lt x (S -n))).(le_S_n x n H0))))) y). - -lemma lt_le_minus: - \forall (x: nat).(\forall (y: nat).((lt x y) \to (le x (minus y (S O))))) -\def - \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (lt x y)).(le_minus x y (S -O) (eq_ind_r nat (plus (S O) x) (\lambda (n: nat).(le n y)) H (plus x (S O)) -(plus_sym x (S O)))))). - -lemma lt_le_e: - \forall (n: nat).(\forall (d: nat).(\forall (P: Prop).((((lt n d) \to P)) -\to ((((le d n) \to P)) \to P)))) -\def - \lambda (n: nat).(\lambda (d: nat).(\lambda (P: Prop).(\lambda (H: (((lt n -d) \to P))).(\lambda (H0: (((le d n) \to P))).(let H1 \def (le_or_lt d n) in -(or_ind (le d n) (lt n d) P H0 H H1)))))). - -lemma lt_eq_e: - \forall (x: nat).(\forall (y: nat).(\forall (P: Prop).((((lt x y) \to P)) -\to ((((eq nat x y) \to P)) \to ((le x y) \to P))))) -\def - \lambda (x: nat).(\lambda (y: nat).(\lambda (P: Prop).(\lambda (H: (((lt x -y) \to P))).(\lambda (H0: (((eq nat x y) \to P))).(\lambda (H1: (le x -y)).(or_ind (lt x y) (eq nat x y) P H H0 (le_lt_or_eq x y H1))))))). - -lemma lt_eq_gt_e: - \forall (x: nat).(\forall (y: nat).(\forall (P: Prop).((((lt x y) \to P)) -\to ((((eq nat x y) \to P)) \to ((((lt y x) \to P)) \to P))))) -\def - \lambda (x: nat).(\lambda (y: nat).(\lambda (P: Prop).(\lambda (H: (((lt x -y) \to P))).(\lambda (H0: (((eq nat x y) \to P))).(\lambda (H1: (((lt y x) -\to P))).(lt_le_e x y P H (\lambda (H2: (le y x)).(lt_eq_e y x P H1 (\lambda -(H3: (eq nat y x)).(H0 (sym_eq nat y x H3))) H2)))))))). - -lemma lt_gen_xS: - \forall (x: nat).(\forall (n: nat).((lt x (S n)) \to (or (eq nat x O) (ex2 -nat (\lambda (m: nat).(eq nat x (S m))) (\lambda (m: nat).(lt m n)))))) -\def - \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (n0: nat).((lt n (S -n0)) \to (or (eq nat n O) (ex2 nat (\lambda (m: nat).(eq nat n (S m))) -(\lambda (m: nat).(lt m n0))))))) (\lambda (n: nat).(\lambda (_: (lt O (S -n))).(or_introl (eq nat O O) (ex2 nat (\lambda (m: nat).(eq nat O (S m))) -(\lambda (m: nat).(lt m n))) (refl_equal nat O)))) (\lambda (n: nat).(\lambda -(_: ((\forall (n0: nat).((lt n (S n0)) \to (or (eq nat n O) (ex2 nat (\lambda -(m: nat).(eq nat n (S m))) (\lambda (m: nat).(lt m n0)))))))).(\lambda (n0: -nat).(\lambda (H0: (lt (S n) (S n0))).(or_intror (eq nat (S n) O) (ex2 nat -(\lambda (m: nat).(eq nat (S n) (S m))) (\lambda (m: nat).(lt m n0))) -(ex_intro2 nat (\lambda (m: nat).(eq nat (S n) (S m))) (\lambda (m: nat).(lt -m n0)) n (refl_equal nat (S n)) (le_S_n (S n) n0 H0))))))) x). - -lemma le_lt_false: - \forall (x: nat).(\forall (y: nat).((le x y) \to ((lt y x) \to (\forall (P: -Prop).P)))) -\def - \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (le x y)).(\lambda (H0: (lt -y x)).(\lambda (P: Prop).(False_ind P (le_not_lt x y H H0)))))). - -lemma lt_neq: - \forall (x: nat).(\forall (y: nat).((lt x y) \to (not (eq nat x y)))) -\def - \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (lt x y)).(\lambda (H0: (eq -nat x y)).(let H1 \def (eq_ind nat x (\lambda (n: nat).(lt n y)) H y H0) in -(lt_n_n y H1))))). - -lemma arith0: - \forall (h2: nat).(\forall (d2: nat).(\forall (n: nat).((le (plus d2 h2) n) -\to (\forall (h1: nat).(le (plus d2 h1) (minus (plus n h1) h2)))))) -\def - \lambda (h2: nat).(\lambda (d2: nat).(\lambda (n: nat).(\lambda (H: (le -(plus d2 h2) n)).(\lambda (h1: nat).(eq_ind nat (minus (plus h2 (plus d2 h1)) -h2) (\lambda (n0: nat).(le n0 (minus (plus n h1) h2))) (le_minus_minus h2 -(plus h2 (plus d2 h1)) (le_plus_l h2 (plus d2 h1)) (plus n h1) (eq_ind_r nat -(plus (plus h2 d2) h1) (\lambda (n0: nat).(le n0 (plus n h1))) (eq_ind_r nat -(plus d2 h2) (\lambda (n0: nat).(le (plus n0 h1) (plus n h1))) (le_S_n (plus -(plus d2 h2) h1) (plus n h1) (le_n_S (plus (plus d2 h2) h1) (plus n h1) -(le_plus_plus (plus d2 h2) n h1 h1 H (le_n h1)))) (plus h2 d2) (plus_sym h2 -d2)) (plus h2 (plus d2 h1)) (plus_assoc_l h2 d2 h1))) (plus d2 h1) -(minus_plus h2 (plus d2 h1))))))). - -lemma O_minus: - \forall (x: nat).(\forall (y: nat).((le x y) \to (eq nat (minus x y) O))) -\def - \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((le n y) \to -(eq nat (minus n y) O)))) (\lambda (y: nat).(\lambda (_: (le O -y)).(refl_equal nat O))) (\lambda (x0: nat).(\lambda (H: ((\forall (y: -nat).((le x0 y) \to (eq nat (minus x0 y) O))))).(\lambda (y: nat).(nat_ind -(\lambda (n: nat).((le (S x0) n) \to (eq nat (match n with [O \Rightarrow (S -x0) | (S l) \Rightarrow (minus x0 l)]) O))) (\lambda (H0: (le (S x0) -O)).(ex2_ind nat (\lambda (n: nat).(eq nat O (S n))) (\lambda (n: nat).(le x0 -n)) (eq nat (S x0) O) (\lambda (x1: nat).(\lambda (H1: (eq nat O (S -x1))).(\lambda (_: (le x0 x1)).(let H3 \def (eq_ind nat O (\lambda (ee: -nat).(match ee with [O \Rightarrow True | (S _) \Rightarrow False])) I (S x1) -H1) in (False_ind (eq nat (S x0) O) H3))))) (le_gen_S x0 O H0))) (\lambda (n: -nat).(\lambda (_: (((le (S x0) n) \to (eq nat (match n with [O \Rightarrow (S -x0) | (S l) \Rightarrow (minus x0 l)]) O)))).(\lambda (H1: (le (S x0) (S -n))).(H n (le_S_n x0 n H1))))) y)))) x). - -lemma minus_minus: - \forall (z: nat).(\forall (x: nat).(\forall (y: nat).((le z x) \to ((le z y) -\to ((eq nat (minus x z) (minus y z)) \to (eq nat x y)))))) -\def - \lambda (z: nat).(nat_ind (\lambda (n: nat).(\forall (x: nat).(\forall (y: -nat).((le n x) \to ((le n y) \to ((eq nat (minus x n) (minus y n)) \to (eq -nat x y))))))) (\lambda (x: nat).(\lambda (y: nat).(\lambda (_: (le O -x)).(\lambda (_: (le O y)).(\lambda (H1: (eq nat (minus x O) (minus y -O))).(let H2 \def (eq_ind_r nat (minus x O) (\lambda (n: nat).(eq nat n -(minus y O))) H1 x (minus_n_O x)) in (let H3 \def (eq_ind_r nat (minus y O) -(\lambda (n: nat).(eq nat x n)) H2 y (minus_n_O y)) in H3))))))) (\lambda -(z0: nat).(\lambda (IH: ((\forall (x: nat).(\forall (y: nat).((le z0 x) \to -((le z0 y) \to ((eq nat (minus x z0) (minus y z0)) \to (eq nat x -y)))))))).(\lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((le -(S z0) n) \to ((le (S z0) y) \to ((eq nat (minus n (S z0)) (minus y (S z0))) -\to (eq nat n y)))))) (\lambda (y: nat).(\lambda (H: (le (S z0) O)).(\lambda -(_: (le (S z0) y)).(\lambda (_: (eq nat (minus O (S z0)) (minus y (S -z0)))).(ex2_ind nat (\lambda (n: nat).(eq nat O (S n))) (\lambda (n: nat).(le -z0 n)) (eq nat O y) (\lambda (x0: nat).(\lambda (H2: (eq nat O (S -x0))).(\lambda (_: (le z0 x0)).(let H4 \def (eq_ind nat O (\lambda (ee: -nat).(match ee with [O \Rightarrow True | (S _) \Rightarrow False])) I (S x0) -H2) in (False_ind (eq nat O y) H4))))) (le_gen_S z0 O H)))))) (\lambda (x0: -nat).(\lambda (_: ((\forall (y: nat).((le (S z0) x0) \to ((le (S z0) y) \to -((eq nat (minus x0 (S z0)) (minus y (S z0))) \to (eq nat x0 y))))))).(\lambda -(y: nat).(nat_ind (\lambda (n: nat).((le (S z0) (S x0)) \to ((le (S z0) n) -\to ((eq nat (minus (S x0) (S z0)) (minus n (S z0))) \to (eq nat (S x0) -n))))) (\lambda (H: (le (S z0) (S x0))).(\lambda (H0: (le (S z0) O)).(\lambda -(_: (eq nat (minus (S x0) (S z0)) (minus O (S z0)))).(let H_y \def (le_S_n z0 -x0 H) in (ex2_ind nat (\lambda (n: nat).(eq nat O (S n))) (\lambda (n: -nat).(le z0 n)) (eq nat (S x0) O) (\lambda (x1: nat).(\lambda (H2: (eq nat O -(S x1))).(\lambda (_: (le z0 x1)).(let H4 \def (eq_ind nat O (\lambda (ee: -nat).(match ee with [O \Rightarrow True | (S _) \Rightarrow False])) I (S x1) -H2) in (False_ind (eq nat (S x0) O) H4))))) (le_gen_S z0 O H0)))))) (\lambda -(y0: nat).(\lambda (_: (((le (S z0) (S x0)) \to ((le (S z0) y0) \to ((eq nat -(minus (S x0) (S z0)) (minus y0 (S z0))) \to (eq nat (S x0) y0)))))).(\lambda -(H: (le (S z0) (S x0))).(\lambda (H0: (le (S z0) (S y0))).(\lambda (H1: (eq -nat (minus (S x0) (S z0)) (minus (S y0) (S z0)))).(f_equal nat nat S x0 y0 -(IH x0 y0 (le_S_n z0 x0 H) (le_S_n z0 y0 H0) H1))))))) y)))) x)))) z). - -lemma plus_plus: - \forall (z: nat).(\forall (x1: nat).(\forall (x2: nat).(\forall (y1: -nat).(\forall (y2: nat).((le x1 z) \to ((le x2 z) \to ((eq nat (plus (minus z -x1) y1) (plus (minus z x2) y2)) \to (eq nat (plus x1 y2) (plus x2 y1))))))))) -\def - \lambda (z: nat).(nat_ind (\lambda (n: nat).(\forall (x1: nat).(\forall (x2: -nat).(\forall (y1: nat).(\forall (y2: nat).((le x1 n) \to ((le x2 n) \to ((eq -nat (plus (minus n x1) y1) (plus (minus n x2) y2)) \to (eq nat (plus x1 y2) -(plus x2 y1)))))))))) (\lambda (x1: nat).(\lambda (x2: nat).(\lambda (y1: -nat).(\lambda (y2: nat).(\lambda (H: (le x1 O)).(\lambda (H0: (le x2 -O)).(\lambda (H1: (eq nat y1 y2)).(eq_ind nat y1 (\lambda (n: nat).(eq nat -(plus x1 n) (plus x2 y1))) (let H_y \def (le_n_O_eq x2 H0) in (eq_ind nat O -(\lambda (n: nat).(eq nat (plus x1 y1) (plus n y1))) (let H_y0 \def -(le_n_O_eq x1 H) in (eq_ind nat O (\lambda (n: nat).(eq nat (plus n y1) (plus -O y1))) (refl_equal nat (plus O y1)) x1 H_y0)) x2 H_y)) y2 H1)))))))) -(\lambda (z0: nat).(\lambda (IH: ((\forall (x1: nat).(\forall (x2: -nat).(\forall (y1: nat).(\forall (y2: nat).((le x1 z0) \to ((le x2 z0) \to -((eq nat (plus (minus z0 x1) y1) (plus (minus z0 x2) y2)) \to (eq nat (plus -x1 y2) (plus x2 y1))))))))))).(\lambda (x1: nat).(nat_ind (\lambda (n: -nat).(\forall (x2: nat).(\forall (y1: nat).(\forall (y2: nat).((le n (S z0)) -\to ((le x2 (S z0)) \to ((eq nat (plus (minus (S z0) n) y1) (plus (minus (S -z0) x2) y2)) \to (eq nat (plus n y2) (plus x2 y1))))))))) (\lambda (x2: -nat).(nat_ind (\lambda (n: nat).(\forall (y1: nat).(\forall (y2: nat).((le O -(S z0)) \to ((le n (S z0)) \to ((eq nat (plus (minus (S z0) O) y1) (plus -(minus (S z0) n) y2)) \to (eq nat (plus O y2) (plus n y1)))))))) (\lambda -(y1: nat).(\lambda (y2: nat).(\lambda (_: (le O (S z0))).(\lambda (_: (le O -(S z0))).(\lambda (H1: (eq nat (S (plus z0 y1)) (S (plus z0 y2)))).(let H_y -\def (IH O O) in (let H2 \def (eq_ind_r nat (minus z0 O) (\lambda (n: -nat).(\forall (y3: nat).(\forall (y4: nat).((le O z0) \to ((le O z0) \to ((eq -nat (plus n y3) (plus n y4)) \to (eq nat y4 y3))))))) H_y z0 (minus_n_O z0)) -in (H2 y1 y2 (le_O_n z0) (le_O_n z0) (eq_add_S (plus z0 y1) (plus z0 y2) -H1))))))))) (\lambda (x3: nat).(\lambda (_: ((\forall (y1: nat).(\forall (y2: -nat).((le O (S z0)) \to ((le x3 (S z0)) \to ((eq nat (S (plus z0 y1)) (plus -(match x3 with [O \Rightarrow (S z0) | (S l) \Rightarrow (minus z0 l)]) y2)) -\to (eq nat y2 (plus x3 y1))))))))).(\lambda (y1: nat).(\lambda (y2: -nat).(\lambda (_: (le O (S z0))).(\lambda (H0: (le (S x3) (S z0))).(\lambda -(H1: (eq nat (S (plus z0 y1)) (plus (minus z0 x3) y2))).(let H_y \def (IH O -x3 (S y1)) in (let H2 \def (eq_ind_r nat (minus z0 O) (\lambda (n: -nat).(\forall (y3: nat).((le O z0) \to ((le x3 z0) \to ((eq nat (plus n (S -y1)) (plus (minus z0 x3) y3)) \to (eq nat y3 (plus x3 (S y1)))))))) H_y z0 -(minus_n_O z0)) in (let H3 \def (eq_ind_r nat (plus z0 (S y1)) (\lambda (n: -nat).(\forall (y3: nat).((le O z0) \to ((le x3 z0) \to ((eq nat n (plus -(minus z0 x3) y3)) \to (eq nat y3 (plus x3 (S y1)))))))) H2 (S (plus z0 y1)) -(plus_n_Sm z0 y1)) in (let H4 \def (eq_ind_r nat (plus x3 (S y1)) (\lambda -(n: nat).(\forall (y3: nat).((le O z0) \to ((le x3 z0) \to ((eq nat (S (plus -z0 y1)) (plus (minus z0 x3) y3)) \to (eq nat y3 n)))))) H3 (S (plus x3 y1)) -(plus_n_Sm x3 y1)) in (H4 y2 (le_O_n z0) (le_S_n x3 z0 H0) H1)))))))))))) -x2)) (\lambda (x2: nat).(\lambda (_: ((\forall (x3: nat).(\forall (y1: -nat).(\forall (y2: nat).((le x2 (S z0)) \to ((le x3 (S z0)) \to ((eq nat -(plus (minus (S z0) x2) y1) (plus (minus (S z0) x3) y2)) \to (eq nat (plus x2 -y2) (plus x3 y1)))))))))).(\lambda (x3: nat).(nat_ind (\lambda (n: -nat).(\forall (y1: nat).(\forall (y2: nat).((le (S x2) (S z0)) \to ((le n (S -z0)) \to ((eq nat (plus (minus (S z0) (S x2)) y1) (plus (minus (S z0) n) y2)) -\to (eq nat (plus (S x2) y2) (plus n y1)))))))) (\lambda (y1: nat).(\lambda -(y2: nat).(\lambda (H: (le (S x2) (S z0))).(\lambda (_: (le O (S -z0))).(\lambda (H1: (eq nat (plus (minus z0 x2) y1) (S (plus z0 y2)))).(let -H_y \def (IH x2 O y1 (S y2)) in (let H2 \def (eq_ind_r nat (minus z0 O) -(\lambda (n: nat).((le x2 z0) \to ((le O z0) \to ((eq nat (plus (minus z0 x2) -y1) (plus n (S y2))) \to (eq nat (plus x2 (S y2)) y1))))) H_y z0 (minus_n_O -z0)) in (let H3 \def (eq_ind_r nat (plus z0 (S y2)) (\lambda (n: nat).((le x2 -z0) \to ((le O z0) \to ((eq nat (plus (minus z0 x2) y1) n) \to (eq nat (plus -x2 (S y2)) y1))))) H2 (S (plus z0 y2)) (plus_n_Sm z0 y2)) in (let H4 \def -(eq_ind_r nat (plus x2 (S y2)) (\lambda (n: nat).((le x2 z0) \to ((le O z0) -\to ((eq nat (plus (minus z0 x2) y1) (S (plus z0 y2))) \to (eq nat n y1))))) -H3 (S (plus x2 y2)) (plus_n_Sm x2 y2)) in (H4 (le_S_n x2 z0 H) (le_O_n z0) -H1)))))))))) (\lambda (x4: nat).(\lambda (_: ((\forall (y1: nat).(\forall -(y2: nat).((le (S x2) (S z0)) \to ((le x4 (S z0)) \to ((eq nat (plus (minus -z0 x2) y1) (plus (match x4 with [O \Rightarrow (S z0) | (S l) \Rightarrow -(minus z0 l)]) y2)) \to (eq nat (S (plus x2 y2)) (plus x4 -y1))))))))).(\lambda (y1: nat).(\lambda (y2: nat).(\lambda (H: (le (S x2) (S -z0))).(\lambda (H0: (le (S x4) (S z0))).(\lambda (H1: (eq nat (plus (minus z0 -x2) y1) (plus (minus z0 x4) y2))).(f_equal nat nat S (plus x2 y2) (plus x4 -y1) (IH x2 x4 y1 y2 (le_S_n x2 z0 H) (le_S_n x4 z0 H0) H1))))))))) x3)))) -x1)))) z). - -lemma le_S_minus: - \forall (d: nat).(\forall (h: nat).(\forall (n: nat).((le (plus d h) n) \to -(le d (S (minus n h)))))) -\def - \lambda (d: nat).(\lambda (h: nat).(\lambda (n: nat).(\lambda (H: (le (plus -d h) n)).(let H0 \def (le_trans d (plus d h) n (le_plus_l d h) H) in (let H1 -\def (eq_ind nat n (\lambda (n0: nat).(le d n0)) H0 (plus (minus n h) h) -(le_plus_minus_sym h n (le_trans h (plus d h) n (le_plus_r d h) H))) in (le_S -d (minus n h) (le_minus d n h H))))))). - -lemma lt_x_pred_y: - \forall (x: nat).(\forall (y: nat).((lt x (pred y)) \to (lt (S x) y))) -\def - \lambda (x: nat).(\lambda (y: nat).(nat_ind (\lambda (n: nat).((lt x (pred -n)) \to (lt (S x) n))) (\lambda (H: (lt x O)).(lt_x_O x H (lt (S x) O))) -(\lambda (n: nat).(\lambda (_: (((lt x (pred n)) \to (lt (S x) n)))).(\lambda -(H0: (lt x n)).(lt_n_S x n H0)))) y)). -