X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fground_1%2Fext%2Farith.ma;h=724a34747372f80cc491fbc63a85f22a9d59db06;hb=57ae1762497a5f3ea75740e2908e04adb8642cc2;hp=d9c7d049cbd7d3825cb67c211b6d57827248ea7d;hpb=639e798161afea770f41d78673c0fe3be4125beb;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/ground_1/ext/arith.ma b/matita/matita/contribs/lambdadelta/ground_1/ext/arith.ma index d9c7d049c..724a34747 100644 --- a/matita/matita/contribs/lambdadelta/ground_1/ext/arith.ma +++ b/matita/matita/contribs/lambdadelta/ground_1/ext/arith.ma @@ -16,7 +16,7 @@ include "ground_1/preamble.ma". -theorem nat_dec: +lemma nat_dec: \forall (n1: nat).(\forall (n2: nat).(or (eq nat n1 n2) ((eq nat n1 n2) \to (\forall (P: Prop).P)))) \def @@ -54,7 +54,7 @@ Prop).P0))) H1 n H3) in (let H5 \def (eq_ind_r nat n0 (\lambda (n3: nat).(or (eq nat (S n) n3) ((eq nat (S n) n3) \to (\forall (P0: Prop).P0)))) H0 n H3) in (H4 (refl_equal nat n) P)))))))) (H n0)))) n2)))) n1). -theorem simpl_plus_r: +lemma simpl_plus_r: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((eq nat (plus m n) (plus p n)) \to (eq nat m p)))) \def @@ -64,18 +64,18 @@ theorem simpl_plus_r: nat).(eq nat n0 (plus n p))) (plus_sym p n) (plus m n) H) (plus n m) (plus_sym n m)))))). -theorem minus_Sx_Sy: +lemma minus_Sx_Sy: \forall (x: nat).(\forall (y: nat).(eq nat (minus (S x) (S y)) (minus x y))) \def \lambda (x: nat).(\lambda (y: nat).(refl_equal nat (minus x y))). -theorem minus_plus_r: +lemma minus_plus_r: \forall (m: nat).(\forall (n: nat).(eq nat (minus (plus m n) n) m)) \def \lambda (m: nat).(\lambda (n: nat).(eq_ind_r nat (plus n m) (\lambda (n0: nat).(eq nat (minus n0 n) m)) (minus_plus n m) (plus m n) (plus_sym m n))). -theorem plus_permute_2_in_3: +lemma plus_permute_2_in_3: \forall (x: nat).(\forall (y: nat).(\forall (z: nat).(eq nat (plus (plus x y) z) (plus (plus x z) y)))) \def @@ -86,7 +86,7 @@ nat (plus (plus x z) y) (\lambda (n: nat).(eq nat n (plus (plus x z) y))) (refl_equal nat (plus (plus x z) y)) (plus x (plus z y)) (plus_assoc_r x z y)) (plus y z) (plus_sym y z)) (plus (plus x y) z) (plus_assoc_r x y z)))). -theorem plus_permute_2_in_3_assoc: +lemma plus_permute_2_in_3_assoc: \forall (n: nat).(\forall (h: nat).(\forall (k: nat).(eq nat (plus (plus n h) k) (plus n (plus k h))))) \def @@ -96,7 +96,7 @@ nat (plus (plus n k) h) (\lambda (n0: nat).(eq nat (plus (plus n k) h) n0)) (refl_equal nat (plus (plus n k) h)) (plus n (plus k h)) (plus_assoc_l n k h)) (plus (plus n h) k) (plus_permute_2_in_3 n h k)))). -theorem plus_O: +lemma plus_O: \forall (x: nat).(\forall (y: nat).((eq nat (plus x y) O) \to (land (eq nat x O) (eq nat y O)))) \def @@ -111,13 +111,13 @@ y) (\lambda (e: nat).(match e with [O \Rightarrow False | (S _) \Rightarrow True])) I O H1) in (False_ind (land (eq nat (S n) O) (eq nat y O)) H2)))]) in (H1 (refl_equal nat O))))))) x). -theorem minus_Sx_SO: +lemma minus_Sx_SO: \forall (x: nat).(eq nat (minus (S x) (S O)) x) \def \lambda (x: nat).(eq_ind nat x (\lambda (n: nat).(eq nat n x)) (refl_equal nat x) (minus x O) (minus_n_O x)). -theorem nat_dec_neg: +lemma nat_dec_neg: \forall (i: nat).(\forall (j: nat).(or (not (eq nat i j)) (eq nat i j))) \def \lambda (i: nat).(nat_ind (\lambda (n: nat).(\forall (j: nat).(or (not (eq @@ -136,7 +136,7 @@ n) (S n0)) (not_eq_S n n0 H1))) (\lambda (H1: (eq nat n n0)).(or_intror (not (eq nat (S n) (S n0))) (eq nat (S n) (S n0)) (f_equal nat nat S n n0 H1))) (H n0)))) j)))) i). -theorem neq_eq_e: +lemma neq_eq_e: \forall (i: nat).(\forall (j: nat).(\forall (P: Prop).((((not (eq nat i j)) \to P)) \to ((((eq nat i j) \to P)) \to P)))) \def @@ -144,7 +144,7 @@ theorem neq_eq_e: (eq nat i j)) \to P))).(\lambda (H0: (((eq nat i j) \to P))).(let o \def (nat_dec_neg i j) in (or_ind (not (eq nat i j)) (eq nat i j) P H H0 o)))))). -theorem le_false: +lemma le_false: \forall (m: nat).(\forall (n: nat).(\forall (P: Prop).((le m n) \to ((le (S n) m) \to P)))) \def @@ -173,13 +173,13 @@ O)))))) (\lambda (n1: nat).(\lambda (_: ((\forall (P: Prop).((le (S n) n1) (S n1))).(\lambda (H2: (le (S (S n1)) (S n))).(H n1 P (le_S_n n n1 H1) (le_S_n (S n1) n H2))))))) n0)))) m). -theorem le_Sx_x: +lemma le_Sx_x: \forall (x: nat).((le (S x) x) \to (\forall (P: Prop).P)) \def \lambda (x: nat).(\lambda (H: (le (S x) x)).(\lambda (P: Prop).(let H0 \def le_Sn_n in (False_ind P (H0 x H))))). -theorem le_n_pred: +lemma le_n_pred: \forall (n: nat).(\forall (m: nat).((le n m) \to (le (pred n) (pred m)))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_ind n (\lambda @@ -187,7 +187,7 @@ theorem le_n_pred: nat).(\lambda (_: (le n m0)).(\lambda (H1: (le (pred n) (pred m0))).(le_trans (pred n) (pred m0) m0 H1 (le_pred_n m0))))) m H))). -theorem minus_le: +lemma minus_le: \forall (x: nat).(\forall (y: nat).(le (minus x y) x)) \def \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).(le (minus n @@ -197,7 +197,7 @@ y) n))) (\lambda (_: nat).(le_O_n O)) (\lambda (n: nat).(\lambda (H: nat).(\lambda (_: (le (match n0 with [O \Rightarrow (S n) | (S l) \Rightarrow (minus n l)]) (S n))).(le_S (minus n n0) n (H n0)))) y)))) x). -theorem le_plus_minus_sym: +lemma le_plus_minus_sym: \forall (n: nat).(\forall (m: nat).((le n m) \to (eq nat m (plus (minus m n) n)))) \def @@ -205,7 +205,7 @@ n)))) (plus n (minus m n)) (\lambda (n0: nat).(eq nat m n0)) (le_plus_minus n m H) (plus (minus m n) n) (plus_sym (minus m n) n)))). -theorem le_minus_minus: +lemma le_minus_minus: \forall (x: nat).(\forall (y: nat).((le x y) \to (\forall (z: nat).((le y z) \to (le (minus y x) (minus z x)))))) \def @@ -215,7 +215,7 @@ nat).(\lambda (H0: (le y z)).(simpl_le_plus_l x (minus y x) (minus z x) z (\lambda (n: nat).(le y n)) H0 (plus x (minus z x)) (le_plus_minus_r x z (le_trans x y z H H0))) (plus x (minus y x)) (le_plus_minus_r x y H))))))). -theorem le_minus_plus: +lemma le_minus_plus: \forall (z: nat).(\forall (x: nat).((le z x) \to (\forall (y: nat).(eq nat (minus (plus x y) z) (plus (minus x z) y))))) \def @@ -246,7 +246,7 @@ nat).(\lambda (_: (((le (S z0) n) \to (\forall (y: nat).(eq nat (minus (plus n y) (S z0)) (plus (minus n (S z0)) y)))))).(\lambda (H1: (le (S z0) (S n))).(\lambda (y: nat).(H n (le_S_n z0 n H1) y))))) x)))) z). -theorem le_minus: +lemma le_minus: \forall (x: nat).(\forall (z: nat).(\forall (y: nat).((le (plus x y) z) \to (le x (minus z y))))) \def @@ -255,14 +255,14 @@ x y) z)).(eq_ind nat (minus (plus x y) y) (\lambda (n: nat).(le n (minus z y))) (le_minus_minus y (plus x y) (le_plus_r x y) z H) x (minus_plus_r x y))))). -theorem le_trans_plus_r: +lemma le_trans_plus_r: \forall (x: nat).(\forall (y: nat).(\forall (z: nat).((le (plus x y) z) \to (le y z)))) \def \lambda (x: nat).(\lambda (y: nat).(\lambda (z: nat).(\lambda (H: (le (plus x y) z)).(le_trans y (plus x y) z (le_plus_r x y) H)))). -theorem lt_x_O: +lemma lt_x_O: \forall (x: nat).((lt x O) \to (\forall (P: Prop).P)) \def \lambda (x: nat).(\lambda (H: (le (S x) O)).(\lambda (P: Prop).(let H_y \def @@ -270,7 +270,7 @@ theorem lt_x_O: ee with [O \Rightarrow True | (S _) \Rightarrow False])) I (S x) H_y) in (False_ind P H0))))). -theorem le_gen_S: +lemma le_gen_S: \forall (m: nat).(\forall (x: nat).((le (S m) x) \to (ex2 nat (\lambda (n: nat).(eq nat x (S n))) (\lambda (n: nat).(le m n))))) \def @@ -286,14 +286,14 @@ m0)).(ex_intro2 nat (\lambda (n: nat).(eq nat (S m0) (S n))) (\lambda (n: nat).(le m n)) m0 (refl_equal nat (S m0)) (le_S_n m m0 (le_S (S m) m0 H2)))) x H1 H0))]) in (H0 (refl_equal nat x))))). -theorem lt_x_plus_x_Sy: +lemma lt_x_plus_x_Sy: \forall (x: nat).(\forall (y: nat).(lt x (plus x (S y)))) \def \lambda (x: nat).(\lambda (y: nat).(eq_ind_r nat (plus (S y) x) (\lambda (n: nat).(lt x n)) (le_S_n (S x) (S (plus y x)) (le_n_S (S x) (S (plus y x)) (le_n_S x (plus y x) (le_plus_r y x)))) (plus x (S y)) (plus_sym x (S y)))). -theorem simpl_lt_plus_r: +lemma simpl_lt_plus_r: \forall (p: nat).(\forall (n: nat).(\forall (m: nat).((lt (plus n p) (plus m p)) \to (lt n m)))) \def @@ -303,7 +303,7 @@ n p) (plus m p))).(simpl_lt_plus_l n m p (let H0 \def (eq_ind nat (plus n p) H1 \def (eq_ind nat (plus m p) (\lambda (n0: nat).(lt (plus p n) n0)) H0 (plus p m) (plus_sym m p)) in H1)))))). -theorem minus_x_Sy: +lemma minus_x_Sy: \forall (x: nat).(\forall (y: nat).((lt y x) \to (eq nat (minus x y) (S (minus x (S y)))))) \def @@ -326,14 +326,14 @@ n))).(eq_ind nat n (\lambda (n0: nat).(eq nat (S n) (S n0))) (refl_equal nat (H1: (lt (S n0) (S n))).(let H2 \def (le_S_n (S n0) n H1) in (H n0 H2))))) y)))) x). -theorem lt_plus_minus: +lemma lt_plus_minus: \forall (x: nat).(\forall (y: nat).((lt x y) \to (eq nat y (S (plus x (minus y (S x))))))) \def \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (lt x y)).(le_plus_minus (S x) y H))). -theorem lt_plus_minus_r: +lemma lt_plus_minus_r: \forall (x: nat).(\forall (y: nat).((lt x y) \to (eq nat y (S (plus (minus y (S x)) x))))) \def @@ -341,14 +341,14 @@ theorem lt_plus_minus_r: (plus x (minus y (S x))) (\lambda (n: nat).(eq nat y (S n))) (lt_plus_minus x y H) (plus (minus y (S x)) x) (plus_sym (minus y (S x)) x)))). -theorem minus_x_SO: +lemma minus_x_SO: \forall (x: nat).((lt O x) \to (eq nat x (S (minus x (S O))))) \def \lambda (x: nat).(\lambda (H: (lt O x)).(eq_ind nat (minus x O) (\lambda (n: nat).(eq nat x n)) (eq_ind nat x (\lambda (n: nat).(eq nat x n)) (refl_equal nat x) (minus x O) (minus_n_O x)) (S (minus x (S O))) (minus_x_Sy x O H))). -theorem le_x_pred_y: +lemma le_x_pred_y: \forall (y: nat).(\forall (x: nat).((lt x y) \to (le x (pred y)))) \def \lambda (y: nat).(nat_ind (\lambda (n: nat).(\forall (x: nat).((lt x n) \to @@ -363,14 +363,14 @@ True])) I O H1) in (False_ind ((le (S x) m) \to (le x O)) H2)) H0))]) in (H0 x n) \to (le x (pred n)))))).(\lambda (x: nat).(\lambda (H0: (lt x (S n))).(le_S_n x n H0))))) y). -theorem lt_le_minus: +lemma lt_le_minus: \forall (x: nat).(\forall (y: nat).((lt x y) \to (le x (minus y (S O))))) \def \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (lt x y)).(le_minus x y (S O) (eq_ind_r nat (plus (S O) x) (\lambda (n: nat).(le n y)) H (plus x (S O)) (plus_sym x (S O)))))). -theorem lt_le_e: +lemma lt_le_e: \forall (n: nat).(\forall (d: nat).(\forall (P: Prop).((((lt n d) \to P)) \to ((((le d n) \to P)) \to P)))) \def @@ -378,7 +378,7 @@ theorem lt_le_e: d) \to P))).(\lambda (H0: (((le d n) \to P))).(let H1 \def (le_or_lt d n) in (or_ind (le d n) (lt n d) P H0 H H1)))))). -theorem lt_eq_e: +lemma lt_eq_e: \forall (x: nat).(\forall (y: nat).(\forall (P: Prop).((((lt x y) \to P)) \to ((((eq nat x y) \to P)) \to ((le x y) \to P))))) \def @@ -386,7 +386,7 @@ theorem lt_eq_e: y) \to P))).(\lambda (H0: (((eq nat x y) \to P))).(\lambda (H1: (le x y)).(or_ind (lt x y) (eq nat x y) P H H0 (le_lt_or_eq x y H1))))))). -theorem lt_eq_gt_e: +lemma lt_eq_gt_e: \forall (x: nat).(\forall (y: nat).(\forall (P: Prop).((((lt x y) \to P)) \to ((((eq nat x y) \to P)) \to ((((lt y x) \to P)) \to P))))) \def @@ -395,7 +395,7 @@ y) \to P))).(\lambda (H0: (((eq nat x y) \to P))).(\lambda (H1: (((lt y x) \to P))).(lt_le_e x y P H (\lambda (H2: (le y x)).(lt_eq_e y x P H1 (\lambda (H3: (eq nat y x)).(H0 (sym_eq nat y x H3))) H2)))))))). -theorem lt_gen_xS: +lemma lt_gen_xS: \forall (x: nat).(\forall (n: nat).((lt x (S n)) \to (or (eq nat x O) (ex2 nat (\lambda (m: nat).(eq nat x (S m))) (\lambda (m: nat).(lt m n)))))) \def @@ -411,21 +411,21 @@ nat).(\lambda (H0: (lt (S n) (S n0))).(or_intror (eq nat (S n) O) (ex2 nat (ex_intro2 nat (\lambda (m: nat).(eq nat (S n) (S m))) (\lambda (m: nat).(lt m n0)) n (refl_equal nat (S n)) (le_S_n (S n) n0 H0))))))) x). -theorem le_lt_false: +lemma le_lt_false: \forall (x: nat).(\forall (y: nat).((le x y) \to ((lt y x) \to (\forall (P: Prop).P)))) \def \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (le x y)).(\lambda (H0: (lt y x)).(\lambda (P: Prop).(False_ind P (le_not_lt x y H H0)))))). -theorem lt_neq: +lemma lt_neq: \forall (x: nat).(\forall (y: nat).((lt x y) \to (not (eq nat x y)))) \def \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (lt x y)).(\lambda (H0: (eq nat x y)).(let H1 \def (eq_ind nat x (\lambda (n: nat).(lt n y)) H y H0) in (lt_n_n y H1))))). -theorem arith0: +lemma arith0: \forall (h2: nat).(\forall (d2: nat).(\forall (n: nat).((le (plus d2 h2) n) \to (\forall (h1: nat).(le (plus d2 h1) (minus (plus n h1) h2)))))) \def @@ -440,7 +440,7 @@ h2) (\lambda (n0: nat).(le n0 (minus (plus n h1) h2))) (le_minus_minus h2 d2)) (plus h2 (plus d2 h1)) (plus_assoc_l h2 d2 h1))) (plus d2 h1) (minus_plus h2 (plus d2 h1))))))). -theorem O_minus: +lemma O_minus: \forall (x: nat).(\forall (y: nat).((le x y) \to (eq nat (minus x y) O))) \def \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((le n y) \to @@ -458,7 +458,7 @@ nat).(\lambda (_: (((le (S x0) n) \to (eq nat (match n with [O \Rightarrow (S x0) | (S l) \Rightarrow (minus x0 l)]) O)))).(\lambda (H1: (le (S x0) (S n))).(H n (le_S_n x0 n H1))))) y)))) x). -theorem minus_minus: +lemma minus_minus: \forall (z: nat).(\forall (x: nat).(\forall (y: nat).((le z x) \to ((le z y) \to ((eq nat (minus x z) (minus y z)) \to (eq nat x y)))))) \def @@ -497,7 +497,7 @@ H2) in (False_ind (eq nat (S x0) O) H4))))) (le_gen_S z0 O H0)))))) (\lambda nat (minus (S x0) (S z0)) (minus (S y0) (S z0)))).(f_equal nat nat S x0 y0 (IH x0 y0 (le_S_n z0 x0 H) (le_S_n z0 y0 H0) H1))))))) y)))) x)))) z). -theorem plus_plus: +lemma plus_plus: \forall (z: nat).(\forall (x1: nat).(\forall (x2: nat).(\forall (y1: nat).(\forall (y2: nat).((le x1 z) \to ((le x2 z) \to ((eq nat (plus (minus z x1) y1) (plus (minus z x2) y2)) \to (eq nat (plus x1 y2) (plus x2 y1))))))))) @@ -572,7 +572,7 @@ x2) y1) (plus (minus z0 x4) y2))).(f_equal nat nat S (plus x2 y2) (plus x4 y1) (IH x2 x4 y1 y2 (le_S_n x2 z0 H) (le_S_n x4 z0 H0) H1))))))))) x3)))) x1)))) z). -theorem le_S_minus: +lemma le_S_minus: \forall (d: nat).(\forall (h: nat).(\forall (n: nat).((le (plus d h) n) \to (le d (S (minus n h)))))) \def @@ -582,7 +582,7 @@ d h) n)).(let H0 \def (le_trans d (plus d h) n (le_plus_l d h) H) in (let H1 (le_plus_minus_sym h n (le_trans h (plus d h) n (le_plus_r d h) H))) in (le_S d (minus n h) (le_minus d n h H))))))). -theorem lt_x_pred_y: +lemma lt_x_pred_y: \forall (x: nat).(\forall (y: nat).((lt x (pred y)) \to (lt (S x) y))) \def \lambda (x: nat).(\lambda (y: nat).(nat_ind (\lambda (n: nat).((lt x (pred