X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fground_2%2Flib%2Farith.ma;h=e3e22484394c91625310912317448ae62121db81;hb=a4998de03fae0f36cde8abf17f45ea115845e849;hp=d9355a1a04cba417f48c68552df06dceed8f1a2e;hpb=1ed30536a512158b064802524175996b01c3abdc;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/ground_2/lib/arith.ma b/matita/matita/contribs/lambdadelta/ground_2/lib/arith.ma index d9355a1a0..e3e224843 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/lib/arith.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/lib/arith.ma @@ -69,21 +69,21 @@ lemma plus_n_2: ∀n. n + 2 = n + 1 + 1. // qed. lemma le_plus_minus: ∀m,n,p. p ≤ n → m + n - p = m + (n - p). -/2 by plus_minus/ qed. +/2 by plus_minus/ qed-. lemma le_plus_minus_comm: ∀n,m,p. p ≤ m → m + n - p = m - p + n. -/2 by plus_minus/ qed. +/2 by plus_minus/ qed-. lemma minus_minus_comm3: ∀n,x,y,z. n-x-y-z = n-y-z-x. // qed. lemma arith_b1: ∀a,b,c1. c1 ≤ b → a - c1 - (b - c1) = a - b. #a #b #c1 #H >minus_minus_comm >minus_le_minus_minus_comm // -qed. +qed-. lemma arith_b2: ∀a,b,c1,c2. c1 + c2 ≤ b → a - c1 - c2 - (b - c1 - c2) = a - b. #a #b #c1 #c2 #H >minus_plus >minus_plus >minus_plus /2 width=1 by arith_b1/ -qed. +qed-. lemma arith_c1x: ∀x,a,b,c1. x + c1 + a - (b + c1) = x + a - b. /3 by monotonic_le_minus_l, le_to_le_to_eq, le_n/ qed. @@ -91,11 +91,15 @@ lemma arith_c1x: ∀x,a,b,c1. x + c1 + a - (b + c1) = x + a - b. lemma arith_h1: ∀a1,a2,b,c1. c1 ≤ a1 → c1 ≤ b → a1 - c1 + a2 - (b - c1) = a1 + a2 - b. #a1 #a2 #b #c1 #H1 #H2 >plus_minus /2 width=1 by arith_b2/ -qed. +qed-. lemma arith_i: ∀x,y,z. y < x → x+z-y-1 = x-y-1+z. /2 width=1 by plus_minus/ qed-. +lemma plus_to_minus_2: ∀m1,m2,n1,n2. n1 ≤ m1 → n2 ≤ m2 → + m1+n2 = m2+n1 → m1-n1 = m2-n2. +/2 width=1 by arith_b1/ qed-. + lemma idempotent_max: ∀n:nat. n = (n ∨ n). #n normalize >le_to_leb_true // qed. @@ -136,7 +140,7 @@ lemma monotonic_le_minus_l2: ∀x1,x2,y,z. x1 ≤ x2 → x1 - y - z ≤ x2 - y - /3 width=1 by monotonic_le_minus_l/ qed. (* Note: this might interfere with nat.ma *) -lemma monotonic_lt_pred: ∀m,n. m < n → O < m → pred m < pred n. +lemma monotonic_lt_pred: ∀m,n. m < n → 0 < m → pred m < pred n. #m #n #Hmn #Hm whd >(S_pred … Hm) @le_S_S_to_le >S_pred /2 width=3 by transitive_lt/ qed. @@ -172,26 +176,6 @@ qed. (* Inversion & forward lemmas ***********************************************) -lemma nat_split: ∀x. x = 0 ∨ ∃y. ⫯y = x. -* /3 width=2 by ex_intro, or_introl, or_intror/ -qed-. - -lemma max_inv_O3: ∀x,y. (x ∨ y) = 0 → 0 = x ∧ 0 = y. -/4 width=2 by le_maxr, le_maxl, le_n_O_to_eq, conj/ -qed-. - -lemma plus_inv_O3: ∀x,y. x + y = 0 → x = 0 ∧ y = 0. -/2 width=1 by plus_le_0/ qed-. - -lemma discr_plus_xy_y: ∀x,y. x + y = y → x = 0. -// qed-. - -lemma discr_plus_x_xy: ∀x,y. x = x + y → y = 0. -/2 width=2 by le_plus_minus_comm/ qed-. - -lemma lt_plus_SO_to_le: ∀x,y. x < y + 1 → x ≤ y. -/2 width=1 by monotonic_pred/ qed-. - lemma lt_refl_false: ∀n. n < n → ⊥. #n #H elim (lt_to_not_eq … H) -H /2 width=1 by/ qed-. @@ -207,25 +191,6 @@ lemma succ_inv_refl_sn: ∀x. ⫯x = x → ⊥. #x #H @(lt_le_false x (⫯x)) // qed-. -lemma lt_inv_O1: ∀n. 0 < n → ∃m. ⫯m = n. -* /2 width=2 by ex_intro/ -#H cases (lt_le_false … H) -H // -qed-. - -lemma lt_inv_S1: ∀m,n. ⫯m < n → ∃∃p. m < p & ⫯p = n. -#m * /3 width=3 by lt_S_S_to_lt, ex2_intro/ -#H cases (lt_le_false … H) -H // -qed-. - -lemma lt_inv_gen: ∀y,x. x < y → ∃∃z. x ≤ z & ⫯z = y. -* /3 width=3 by le_S_S_to_le, ex2_intro/ -#x #H elim (lt_le_false … H) -H // -qed-. - -lemma pred_inv_refl: ∀m. pred m = m → m = 0. -* // normalize #m #H elim (lt_refl_false m) // -qed-. - lemma le_plus_xSy_O_false: ∀x,y. x + S y ≤ 0 → ⊥. #x #y #H lapply (le_n_O_to_eq … H) -H H -H +/2 width=2 by le_plus_to_le/ +qed-. + +lemma lt_S_S_to_lt: ∀x,y. ⫯x < ⫯y → x < y. +/2 width=1 by le_S_S_to_le/ qed-. + (* Note this should go in nat.ma *) lemma discr_x_minus_xy: ∀x,y. x = x - y → x = 0 ∨ y = 0. #x @(nat_ind_plus … x) -x /2 width=1 by or_introl/ @@ -250,12 +237,35 @@ lemma discr_x_minus_xy: ∀x,y. x = x - y → x = 0 ∨ y = 0. #H destruct qed-. +lemma lt_inv_O1: ∀n. 0 < n → ∃m. ⫯m = n. +* /2 width=2 by ex_intro/ +#H cases (lt_le_false … H) -H // +qed-. + +lemma lt_inv_S1: ∀m,n. ⫯m < n → ∃∃p. m < p & ⫯p = n. +#m * /3 width=3 by lt_S_S_to_lt, ex2_intro/ +#H cases (lt_le_false … H) -H // +qed-. + +lemma lt_inv_gen: ∀y,x. x < y → ∃∃z. x ≤ z & ⫯z = y. +* /3 width=3 by le_S_S_to_le, ex2_intro/ +#x #H elim (lt_le_false … H) -H // +qed-. + +lemma plus_inv_O3: ∀x,y. x + y = 0 → x = 0 ∧ y = 0. +/2 width=1 by plus_le_0/ qed-. + +lemma max_inv_O3: ∀x,y. (x ∨ y) = 0 → 0 = x ∧ 0 = y. +/4 width=2 by le_maxr, le_maxl, le_n_O_to_eq, conj/ +qed-. + lemma zero_eq_plus: ∀x,y. 0 = x + y → 0 = x ∧ 0 = y. * /2 width=1 by conj/ #x #y normalize #H destruct qed-. -lemma lt_S_S_to_lt: ∀x,y. ⫯x < ⫯y → x < y. -/2 width=1 by le_S_S_to_le/ qed-. +lemma nat_split: ∀x. x = 0 ∨ ∃y. ⫯y = x. +* /3 width=2 by ex_intro, or_introl, or_intror/ +qed-. lemma lt_elim: ∀R:relation nat. (∀n2. R O (⫯n2)) →