X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fground_2%2Flib%2Frelations.ma;h=47524fd84d4669ebe1b4d425074aece7642941eb;hb=d8d00d6f6694155be5be486a8239f5953efe28b7;hp=7c63b469f36ecaa02c2f6c11f11e6fb7a9e4e9a9;hpb=c52e807a10cac88866b61fa458936dc5c0f5ee70;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/ground_2/lib/relations.ma b/matita/matita/contribs/lambdadelta/ground_2/lib/relations.ma index 7c63b469f..47524fd84 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/lib/relations.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/lib/relations.ma @@ -13,15 +13,14 @@ (**************************************************************************) include "basics/relations.ma". +include "ground_2/xoa/and_3.ma". +include "ground_2/xoa/ex_2_2.ma". include "ground_2/lib/logic.ma". (* GENERIC RELATIONS ********************************************************) -lemma insert_eq: ∀A,a. ∀Q1,Q2:predicate A. (∀a0. Q1 a0 → a = a0 → Q2 a0) → Q1 a → Q2 a. -/2 width=1 by/ qed-. - definition replace_2 (A) (B): relation3 (relation2 A B) (relation A) (relation B) ≝ - λR,Sa,Sb. ∀a1,b1. R a1 b1 → ∀a2. Sa a1 a2 → ∀b2. Sb b1 b2 → R a2 b2. + λR,Sa,Sb. ∀a1,b1. R a1 b1 → ∀a2. Sa a1 a2 → ∀b2. Sb b1 b2 → R a2 b2. (* Inclusion ****************************************************************) @@ -39,81 +38,93 @@ interpretation "3-relation inclusion" (* Properties of relations **************************************************) -definition relation5: Type[0] → Type[0] → Type[0] → Type[0] → Type[0] → Type[0] -≝ λA,B,C,D,E.A→B→C→D→E→Prop. +definition relation5: Type[0] → Type[0] → Type[0] → Type[0] → Type[0] → Type[0] ≝ + λA,B,C,D,E.A→B→C→D→E→Prop. -definition relation6: Type[0] → Type[0] → Type[0] → Type[0] → Type[0] → Type[0] → Type[0] -≝ λA,B,C,D,E,F.A→B→C→D→E→F→Prop. +definition relation6: Type[0] → Type[0] → Type[0] → Type[0] → Type[0] → Type[0] → Type[0] ≝ + λA,B,C,D,E,F.A→B→C→D→E→F→Prop. -(**) (* we dont use "∀a. reflexive … (R a)" since auto seems to dislike repeatd δ-expansion *) +(**) (* we don't use "∀a. reflexive … (R a)" since auto seems to dislike repeatd δ-expansion *) definition c_reflexive (A) (B): predicate (relation3 A B B) ≝ - λR. ∀a,b. R a b b. + λR. ∀a,b. R a b b. definition Decidable: Prop → Prop ≝ λR. R ∨ (R → ⊥). -definition Transitive: ∀A. ∀R: relation A. Prop ≝ λA,R. - ∀a1,a0. R a1 a0 → ∀a2. R a0 a2 → R a1 a2. +definition Transitive (A) (R:relation A): Prop ≝ + ∀a1,a0. R a1 a0 → ∀a2. R a0 a2 → R a1 a2. + +definition left_cancellable (A) (R:relation A): Prop ≝ + ∀a0,a1. R a0 a1 → ∀a2. R a0 a2 → R a1 a2. + +definition right_cancellable (A) (R:relation A): Prop ≝ + ∀a1,a0. R a1 a0 → ∀a2. R a2 a0 → R a1 a2. + +definition pw_confluent2 (A) (R1,R2:relation A): predicate A ≝ + λa0. + ∀a1. R1 a0 a1 → ∀a2. R2 a0 a2 → + ∃∃a. R2 a1 a & R1 a2 a. -definition left_cancellable: ∀A. ∀R: relation A. Prop ≝ λA,R. - ∀a0,a1. R a0 a1 → ∀a2. R a0 a2 → R a1 a2. +definition confluent2 (A): relation (relation A) ≝ + λR1,R2. + ∀a0. pw_confluent2 A R1 R2 a0. -definition right_cancellable: ∀A. ∀R: relation A. Prop ≝ λA,R. - ∀a1,a0. R a1 a0 → ∀a2. R a2 a0 → R a1 a2. +definition transitive2 (A) (R1,R2:relation A): Prop ≝ + ∀a1,a0. R1 a1 a0 → ∀a2. R2 a0 a2 → + ∃∃a. R2 a1 a & R1 a a2. -definition pw_confluent2: ∀A. relation A → relation A → predicate A ≝ λA,R1,R2,a0. - ∀a1. R1 a0 a1 → ∀a2. R2 a0 a2 → - ∃∃a. R2 a1 a & R1 a2 a. +definition bi_confluent (A) (B) (R: bi_relation A B): Prop ≝ + ∀a0,a1,b0,b1. R a0 b0 a1 b1 → ∀a2,b2. R a0 b0 a2 b2 → + ∃∃a,b. R a1 b1 a b & R a2 b2 a b. -definition confluent2: ∀A. relation (relation A) ≝ λA,R1,R2. - ∀a0. pw_confluent2 A R1 R2 a0. +definition lsub_trans (A) (B): relation2 (A→relation B) (relation A) ≝ + λR1,R2. + ∀L2,T1,T2. R1 L2 T1 T2 → ∀L1. R2 L1 L2 → R1 L1 T1 T2. -definition transitive2: ∀A. ∀R1,R2: relation A. Prop ≝ λA,R1,R2. - ∀a1,a0. R1 a1 a0 → ∀a2. R2 a0 a2 → - ∃∃a. R2 a1 a & R1 a a2. +definition s_r_confluent1 (A) (B): relation2 (A→relation B) (B→relation A) ≝ + λR1,R2. + ∀L1,T1,T2. R1 L1 T1 T2 → ∀L2. R2 T1 L1 L2 → R2 T2 L1 L2. -definition bi_confluent: ∀A,B. ∀R: bi_relation A B. Prop ≝ λA,B,R. - ∀a0,a1,b0,b1. R a0 b0 a1 b1 → ∀a2,b2. R a0 b0 a2 b2 → - ∃∃a,b. R a1 b1 a b & R a2 b2 a b. +definition is_mono (B:Type[0]): predicate (predicate B) ≝ + λR. ∀b1. R b1 → ∀b2. R b2 → b1 = b2. -definition lsub_trans: ∀A,B. relation2 (A→relation B) (relation A) ≝ λA,B,R1,R2. - ∀L2,T1,T2. R1 L2 T1 T2 → ∀L1. R2 L1 L2 → R1 L1 T1 T2. +definition is_inj2 (A,B:Type[0]): predicate (relation2 A B) ≝ + λR. ∀a1,b. R a1 b → ∀a2. R a2 b → a1 = a2. -definition s_r_confluent1: ∀A,B. relation2 (A→relation B) (B→relation A) ≝ λA,B,R1,R2. - ∀L1,T1,T2. R1 L1 T1 T2 → ∀L2. R2 T1 L1 L2 → R2 T2 L1 L2. +(* Main properties of equality **********************************************) -definition is_mono: ∀B:Type[0]. predicate (predicate B) ≝ - λB,R. ∀b1. R b1 → ∀b2. R b2 → b1 = b2. +theorem canc_sn_eq (A): left_cancellable A (eq …). +// qed-. -definition is_inj2: ∀A,B:Type[0]. predicate (relation2 A B) ≝ - λA,B,R. ∀a1,b. R a1 b → ∀a2. R a2 b → a1 = a2. +theorem canc_dx_eq (A): right_cancellable A (eq …). +// qed-. (* Normal form and strong normalization *************************************) -definition NF: ∀A. relation A → relation A → predicate A ≝ - λA,R,S,a1. ∀a2. R a1 a2 → S a1 a2. +definition NF (A): relation A → relation A → predicate A ≝ + λR,S,a1. ∀a2. R a1 a2 → S a1 a2. -definition NF_dec: ∀A. relation A → relation A → Prop ≝ - λA,R,S. ∀a1. NF A R S a1 ∨ - ∃∃a2. R … a1 a2 & (S a1 a2 → ⊥). +definition NF_dec (A): relation A → relation A → Prop ≝ + λR,S. ∀a1. NF A R S a1 ∨ + ∃∃a2. R … a1 a2 & (S a1 a2 → ⊥). inductive SN (A) (R,S:relation A): predicate A ≝ | SN_intro: ∀a1. (∀a2. R a1 a2 → (S a1 a2 → ⊥) → SN A R S a2) → SN A R S a1 . -lemma NF_to_SN: ∀A,R,S,a. NF A R S a → SN A R S a. +lemma NF_to_SN (A) (R) (S): ∀a. NF A R S a → SN A R S a. #A #R #S #a1 #Ha1 @SN_intro #a2 #HRa12 #HSa12 elim HSa12 -HSa12 /2 width=1 by/ qed. -definition NF_sn: ∀A. relation A → relation A → predicate A ≝ - λA,R,S,a2. ∀a1. R a1 a2 → S a1 a2. +definition NF_sn (A): relation A → relation A → predicate A ≝ + λR,S,a2. ∀a1. R a1 a2 → S a1 a2. inductive SN_sn (A) (R,S:relation A): predicate A ≝ | SN_sn_intro: ∀a2. (∀a1. R a1 a2 → (S a1 a2 → ⊥) → SN_sn A R S a1) → SN_sn A R S a2 . -lemma NF_to_SN_sn: ∀A,R,S,a. NF_sn A R S a → SN_sn A R S a. +lemma NF_to_SN_sn (A) (R) (S): ∀a. NF_sn A R S a → SN_sn A R S a. #A #R #S #a2 #Ha2 @SN_sn_intro #a1 #HRa12 #HSa12 elim HSa12 -HSa12 /2 width=1 by/ @@ -121,9 +132,10 @@ qed. (* Relations on unboxed triples *********************************************) -definition tri_RC: ∀A,B,C. tri_relation A B C → tri_relation A B C ≝ - λA,B,C,R,a1,b1,c1,a2,b2,c2. R … a1 b1 c1 a2 b2 c2 ∨ - ∧∧ a1 = a2 & b1 = b2 & c1 = c2. +definition tri_RC (A,B,C): tri_relation A B C → tri_relation A B C ≝ + λR,a1,b1,c1,a2,b2,c2. + ∨∨ R … a1 b1 c1 a2 b2 c2 + | ∧∧ a1 = a2 & b1 = b2 & c1 = c2. -lemma tri_RC_reflexive: ∀A,B,C,R. tri_reflexive A B C (tri_RC … R). +lemma tri_RC_reflexive (A) (B) (C): ∀R. tri_reflexive A B C (tri_RC … R). /3 width=1 by and3_intro, or_intror/ qed.