X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fground_2%2Frelocation%2Fnstream_after.ma;h=ca3ad7bc7c44535ed250d434ea40d6549336f835;hb=bd53c4e895203eb049e75434f638f26b5a161a2b;hp=ae7add375539397cb2ef84e0aab7fbadab3b4af8;hpb=6acee1cf296163fee832b112c96b6624253aee06;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_after.ma b/matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_after.ma index ae7add375..ca3ad7bc7 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_after.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_after.ma @@ -12,426 +12,147 @@ (* *) (**************************************************************************) -include "ground_2/notation/relations/rafter_3.ma". -include "ground_2/lib/streams_hdtl.ma". -include "ground_2/relocation/nstream_at.ma". +include "ground_2/relocation/nstream_istot.ma". +include "ground_2/relocation/rtmap_after.ma". (* RELOCATION N-STREAM ******************************************************) -let corec compose: rtmap → rtmap → rtmap ≝ ?. -#f1 * #b2 #f2 @(seq … (f1@❴b2❵)) @(compose ? f2) -compose -f2 -@(tln … (⫯b2) f1) -qed. +corec definition compose: rtmap → rtmap → rtmap. +#f2 * #n1 #f1 @(seq … (f2@❨n1❩)) @(compose ? f1) -compose -f1 +@(⫰*[↑n1] f2) +defined. interpretation "functional composition (nstream)" - 'compose f1 f2 = (compose f1 f2). - -coinductive after: relation3 rtmap rtmap rtmap ≝ -| after_zero: ∀f1,f2,f,b1,b2,b. - after f1 f2 f → - b1 = 0 → b2 = 0 → b = 0 → - after (b1@f1) (b2@f2) (b@f) -| after_skip: ∀f1,f2,f,b1,b2,b,a2,a. - after f1 (a2@f2) (a@f) → - b1 = 0 → b2 = ⫯a2 → b = ⫯a → - after (b1@f1) (b2@f2) (b@f) -| after_drop: ∀f1,f2,f,b1,b,a1,a. - after (a1@f1) f2 (a@f) → - b1 = ⫯a1 → b = ⫯a → - after (b1@f1) f2 (b@f) -. - -interpretation "relational composition (nstream)" - 'RAfter f1 f2 f = (after f1 f2 f). + 'compose f2 f1 = (compose f2 f1). (* Basic properies on compose ***********************************************) -lemma compose_unfold: ∀f1,f2,a2. f1∘(a2@f2) = f1@❴a2❵@tln … (⫯a2) f1∘f2. -#f1 #f2 #a2 >(stream_expand … (f1∘(a2@f2))) normalize // +lemma compose_rew: ∀f2,f1,n1. f2@❨n1❩⨮(⫰*[↑n1]f2)∘f1 = f2∘(n1⨮f1). +#f2 #f1 #n1 <(stream_rew … (f2∘(n1⨮f1))) normalize // qed. -lemma compose_drop: ∀f1,f2,f,a1,a. (a1@f1)∘f2 = a@f → (⫯a1@f1)∘f2 = ⫯a@f. -#f1 * #a2 #f2 #f #a1 #a >compose_unfold >compose_unfold -#H destruct normalize // +lemma compose_next: ∀f2,f1,f. f2∘f1 = f → (↑f2)∘f1 = ↑f. +#f2 * #n1 #f1 #f (stream_expand … (f1∘(a2@f2))) normalize +lemma compose_inv_rew: ∀f2,f1,f,n1,n. f2∘(n1⨮f1) = n⨮f → + f2@❨n1❩ = n ∧ (⫰*[↑n1]f2)∘f1 = f. +#f2 #f1 #f #n1 #n <(stream_rew … (f2∘(n1⨮f1))) normalize #H destruct /2 width=1 by conj/ qed-. -lemma compose_inv_O2: ∀f1,f2,f,a1,a. (a1@f1)∘(O@f2) = a@f → - a = a1 ∧ f1∘f2 = f. -#f1 #f2 #f #a1 #a >compose_unfold +lemma compose_inv_O2: ∀f2,f1,f,n2,n. (n2⨮f2)∘(⫯f1) = n⨮f → + n2 = n ∧ f2∘f1 = f. +#f2 #f1 #f #n2 #n compose_unfold -#H destruct /2 width=1 by conj/ +lemma compose_inv_S2: ∀f2,f1,f,n2,n1,n. (n2⨮f2)∘(↑n1⨮f1) = n⨮f → + ↑(n2+f2@❨n1❩) = n ∧ f2∘(n1⨮f1) = f2@❨n1❩⨮f. +#f2 #f1 #f #n2 #n1 #n compose_unfold -#H destruct /2 width=1 by conj/ +lemma compose_inv_S1: ∀f2,f1,f,n1,n. (↑f2)∘(n1⨮f1) = n⨮f → + ↑(f2@❨n1❩) = n ∧ f2∘(n1⨮f1) = f2@❨n1❩⨮f. +#f2 #f1 #f #n1 #n next_rew #H cases (compose_inv_S1 … H) -H * -n /3 width=5 by after_next/ ] qed-. -theorem after_total: ∀f2,f1. f1 ⊚ f2 ≡ f1 ∘ f2. +theorem after_total: ∀f1,f2. f2 ⊚ f1 ≘ f2 ∘ f1. /2 width=1 by after_total_aux/ qed. -(* Basic inversion lemmas on after ******************************************) - -fact after_inv_O1_aux: ∀f1,f2,f. f1 ⊚ f2 ≡ f → ∀g1. f1 = 0@g1 → - (∃∃g2,g. g1 ⊚ g2 ≡ g & f2 = 0@g2 & f = 0@g) ∨ - ∃∃g2,g,b2,b. g1 ⊚ b2@g2 ≡ b@g & f2 = ⫯b2@g2 & f = ⫯b@g. -#f1 #f2 #f * -f1 -f2 -f #f1 #f2 #f #b1 -[ #b2 #b #Ht #H1 #H2 #H3 #g1 #H destruct /3 width=5 by ex3_2_intro, or_introl/ -| #b2 #b #a2 #a #Ht #H1 #H2 #H3 #g1 #H destruct /3 width=7 by ex3_4_intro, or_intror/ -| #b #a1 #a #_ #H1 #H3 #g1 #H destruct -] -qed-. - -fact after_inv_O1_aux2: ∀f1,f2,f,b1,b2,b. b1@f1 ⊚ b2@f2 ≡ b@f → b1 = 0 → - (∧∧ f1 ⊚ f2 ≡ f & b2 = 0 & b = 0) ∨ - ∃∃a2,a. f1 ⊚ a2@f2 ≡ a@f & b2 = ⫯a2 & b = ⫯a. -#f1 #f2 #f #b1 #b2 #b #Ht #H elim (after_inv_O1_aux … Ht) -Ht [4: // |2: skip ] * -[ #g2 #g #Hu #H1 #H2 destruct /3 width=1 by and3_intro, or_introl/ -| #g2 #g #a2 #a #Hu #H1 #H2 destruct /3 width=5 by ex3_2_intro, or_intror/ -] -qed-. - -lemma after_inv_O1: ∀g1,f2,f. 0@g1 ⊚ f2 ≡ f → - (∃∃g2,g. g1 ⊚ g2 ≡ g & f2 = 0@g2 & f = 0@g) ∨ - ∃∃g2,g,b2,b. g1 ⊚ b2@g2 ≡ b@g & f2 = ⫯b2@g2 & f = ⫯b@g. -/2 width=3 by after_inv_O1_aux/ qed-. - -fact after_inv_zero_aux2: ∀f1,f2,f,b1,b2,b. b1@f1 ⊚ b2@f2 ≡ b@f → b1 = 0 → b2 = 0 → - f1 ⊚ f2 ≡ f ∧ b = 0. -#f1 #f2 #f #b1 #b2 #b #Ht #H1 #H2 elim (after_inv_O1_aux2 … Ht H1) -Ht -H1 * -[ /2 width=1 by conj/ -| #a1 #a2 #_ #H0 destruct -] -qed-. - -lemma after_inv_zero: ∀g1,g2,f. 0@g1 ⊚ 0@g2 ≡ f → - ∃∃g. g1 ⊚ g2 ≡ g & f = 0@g. -#g1 #g2 #f #H elim (after_inv_O1 … H) -H * -[ #x2 #g #Hu #H1 #H2 destruct /2 width=3 by ex2_intro/ -| #x2 #g #a2 #a #Hu #H destruct -] -qed-. - -fact after_inv_skip_aux2: ∀f1,f2,f,b1,b2,b. b1@f1 ⊚ b2@f2 ≡ b@f → b1 = 0 → ∀a2. b2 = ⫯a2 → - ∃∃a. f1 ⊚ a2@f2 ≡ a@f & b = ⫯a. -#f1 #f2 #f #b1 #b2 #b #Ht #H1 #a2 #H2 elim (after_inv_O1_aux2 … Ht H1) -Ht -H1 * -[ #_ #H0 destruct -| #x2 #x #H #H0 #H1 destruct /2 width=3 by ex2_intro/ -] -qed-. - -lemma after_inv_skip: ∀g1,g2,f,b2. 0@g1 ⊚ ⫯b2@g2 ≡ f → - ∃∃g,b. g1 ⊚ b2@g2 ≡ b@g & f = ⫯b@g. -#g1 #g2 * #b #f #b2 #Ht elim (after_inv_skip_aux2 … Ht) [2,4: // |3: skip ] -Ht -#a #Ht #H destruct /2 width=4 by ex2_2_intro/ -qed-. - -fact after_inv_S1_aux: ∀f1,f2,f. f1 ⊚ f2 ≡ f → ∀g1,b1. f1 = ⫯b1@g1 → - ∃∃g,b. b1@g1 ⊚ f2 ≡ b@g & f = ⫯b@g. -#f1 #f2 #f * -f1 -f2 -f #f1 #f2 #f #b1 -[ #b2 #b #_ #H1 #H2 #H3 #g1 #a1 #H destruct -| #b2 #b #a2 #a #_ #H1 #H2 #H3 #g1 #a1 #H destruct -| #b #a1 #a #Ht #H1 #H3 #g1 #x1 #H destruct /2 width=4 by ex2_2_intro/ -] -qed-. - -fact after_inv_S1_aux2: ∀f1,f2,f,b1,b. b1@f1 ⊚ f2 ≡ b@f → ∀a1. b1 = ⫯a1 → - ∃∃a. a1@f1 ⊚ f2 ≡ a@f & b = ⫯a. -#f1 #f2 #f #b1 #b #Ht #a #H elim (after_inv_S1_aux … Ht) -Ht [4: // |2,3: skip ] -#g #x #Hu #H0 destruct /2 width=3 by ex2_intro/ -qed-. - -lemma after_inv_S1: ∀g1,f2,f,b1. ⫯b1@g1 ⊚ f2 ≡ f → - ∃∃g,b. b1@g1 ⊚ f2 ≡ b@g & f = ⫯b@g. -/2 width=3 by after_inv_S1_aux/ qed-. - -fact after_inv_drop_aux2: ∀f1,f2,f,a1,a. a1@f1 ⊚ f2 ≡ a@f → ∀b1,b. a1 = ⫯b1 → a = ⫯b → - b1@f1 ⊚ f2 ≡ b@f. -#f1 #f2 #f #a1 #a #Ht #b1 #b #H1 #H elim (after_inv_S1_aux2 … Ht … H1) -a1 -#x #Ht #Hx destruct // -qed-. - -lemma after_inv_drop: ∀f1,f2,f,b1,b. ⫯b1@f1 ⊚ f2 ≡ ⫯b@f → b1@f1 ⊚ f2 ≡ b@f. -/2 width=5 by after_inv_drop_aux2/ qed-. - -fact after_inv_O3_aux1: ∀f1,f2,f. f1 ⊚ f2 ≡ f → ∀g. f = 0@g → - ∃∃g1,g2. g1 ⊚ g2 ≡ g & f1 = 0@g1 & f2 = 0@g2. -#f1 #f2 #f * -f1 -f2 -f #f1 #f2 #f #b1 -[ #b2 #b #Ht #H1 #H2 #H3 #g #H destruct /2 width=5 by ex3_2_intro/ -| #b2 #b #a2 #a #_ #H1 #H2 #H3 #g #H destruct -| #b #a1 #a #_ #H1 #H3 #g #H destruct -] -qed-. - -fact after_inv_O3_aux2: ∀f1,f2,f,b1,b2,b. b1@f1 ⊚ b2@f2 ≡ b@f → b = 0 → - ∧∧ f1 ⊚ f2 ≡ f & b1 = 0 & b2 = 0. -#f1 #f2 #f #b1 #b2 #b #Ht #H1 elim (after_inv_O3_aux1 … Ht) [2: // |3: skip ] -b -#g1 #g2 #Ht #H1 #H2 destruct /2 width=1 by and3_intro/ -qed-. - -lemma after_inv_O3: ∀f1,f2,g. f1 ⊚ f2 ≡ 0@g → - ∃∃g1,g2. g1 ⊚ g2 ≡ g & f1 = 0@g1 & f2 = 0@g2. -/2 width=3 by after_inv_O3_aux1/ qed-. - -fact after_inv_S3_aux1: ∀f1,f2,f. f1 ⊚ f2 ≡ f → ∀g,b. f = ⫯b@g → - (∃∃g1,g2,b2. g1 ⊚ b2@g2 ≡ b@g & f1 = 0@g1 & f2 = ⫯b2@g2) ∨ - ∃∃g1,b1. b1@g1 ⊚ f2 ≡ b@g & f1 = ⫯b1@g1. -#f1 #f2 #f * -f1 -f2 -f #f1 #f2 #f #b1 -[ #b2 #b #_ #H1 #H2 #H3 #g #a #H destruct -| #b2 #b #a2 #a #HT #H1 #H2 #H3 #g #x #H destruct /3 width=6 by ex3_3_intro, or_introl/ -| #b #a1 #a #HT #H1 #H3 #g #x #H destruct /3 width=4 by ex2_2_intro, or_intror/ -] -qed-. - -fact after_inv_S3_aux2: ∀f1,f2,f,a1,a2,a. a1@f1 ⊚ a2@f2 ≡ a@f → ∀b. a = ⫯b → - (∃∃b2. f1 ⊚ b2@f2 ≡ b@f & a1 = 0 & a2 = ⫯b2) ∨ - ∃∃b1. b1@f1 ⊚ a2@f2 ≡ b@f & a1 = ⫯b1. -#f1 #f2 #f #a1 #a2 #a #Ht #b #H elim (after_inv_S3_aux1 … Ht) [3: // |4,5: skip ] -a * -[ #g1 #g2 #b2 #Ht #H1 #H2 destruct /3 width=3 by ex3_intro, or_introl/ -| #g1 #b1 #Ht #H1 destruct /3 width=3 by ex2_intro, or_intror/ -] -qed-. - -lemma after_inv_S3: ∀f1,f2,g,b. f1 ⊚ f2 ≡ ⫯b@g → - (∃∃g1,g2,b2. g1 ⊚ b2@g2 ≡ b@g & f1 = 0@g1 & f2 = ⫯b2@g2) ∨ - ∃∃g1,b1. b1@g1 ⊚ f2 ≡ b@g & f1 = ⫯b1@g1. -/2 width=3 by after_inv_S3_aux1/ qed-. - -(* Advanced inversion lemmas on after ***************************************) - -fact after_inv_O2_aux2: ∀f1,f2,f,a1,a2,a. a1@f1 ⊚ a2@f2 ≡ a@f → a2 = 0 → - a1 = a ∧ f1 ⊚ f2 ≡ f. -#f1 #f2 #f #a1 #a2 elim a1 -a1 -[ #a #H #H2 elim (after_inv_zero_aux2 … H … H2) -a2 /2 width=1 by conj/ -| #a1 #IH #a #H #H2 elim (after_inv_S1_aux2 … H) -H [3: // |2: skip ] - #b #H #H1 elim (IH … H) // -a2 - #H2 destruct /2 width=1 by conj/ -] -qed-. - -lemma after_inv_O2: ∀f1,g2,f. f1 ⊚ 0@g2 ≡ f → - ∃∃g1,g,a. f1 = a@g1 & f = a@g & g1 ⊚ g2 ≡ g. -* #a1 #f1 #f2 * #a #f #H elim (after_inv_O2_aux2 … H) -H // -/2 width=6 by ex3_3_intro/ -qed-. +(* Specific inversion lemmas on after ***************************************) -lemma after_inv_const: ∀a,f1,b2,g2,f. a@f1 ⊚ b2@g2 ≡ a@f → b2 = 0. -#a elim a -a -[ #f1 #b2 #g2 #f #H elim (after_inv_O3 … H) -H - #g1 #x2 #_ #_ #H destruct // -| #a #IH #f1 #b2 #g2 #f #H elim (after_inv_S1 … H) -H - #x #b #Hx #H destruct >(IH … Hx) -f1 -g2 -x -b2 -b // +lemma after_inv_xpx: ∀f2,g2,f,n2,n. n2⨮f2 ⊚ g2 ≘ n⨮f → ∀f1. ⫯f1 = g2 → + f2 ⊚ f1 ≘ f ∧ n2 = n. +#f2 #g2 #f #n2 elim n2 -n2 +[ #n #Hf #f1 #H2 elim (after_inv_ppx … Hf … H2) -g2 [2,3: // ] + #g #Hf #H elim (push_inv_seq_dx … H) -H destruct /2 width=1 by conj/ +| #n2 #IH #n #Hf #f1 #H2 elim (after_inv_nxx … Hf) -Hf [2,3: // ] + #g1 #Hg #H1 elim (next_inv_seq_dx … H1) -H1 + #x #Hx #H destruct elim (IH … Hg) [2,3: // ] -IH -Hg + #H destruct /2 width=1 by conj/ ] qed-. -lemma after_inv_S2: ∀f1,f2,f,a1,a2,a. a1@f1 ⊚ ⫯a2@f2 ≡ a@f → ∀b. a = ⫯(a1+b) → - f1 ⊚ a2@f2 ≡ b@f. -#f1 #f2 #f #a1 elim a1 -a1 -[ #a2 #a #Ht #b #Hb - elim (after_inv_skip_aux2 … Ht) -Ht [3,4: // |2: skip ] - #c #Ht #Hc destruct // -| #a1 #IH #a2 #a #Ht #b #Hb - lapply (after_inv_drop_aux2 … Ht … Hb) -a [ // | skip ] - /2 width=3 by/ -] -qed-. - -(* Forward lemmas on application ********************************************) - -lemma after_at_fwd: ∀f,i1,i. @⦃i1, f⦄ ≡ i → ∀f2,f1. f2 ⊚ f1 ≡ f → - ∃∃i2. @⦃i1, f1⦄ ≡ i2 & @⦃i2, f2⦄ ≡ i. -#f #i1 #i #H elim H -f -i1 -i -[ #f #f2 #f1 #H elim (after_inv_O3 … H) -H - /2 width=3 by at_zero, ex2_intro/ -| #f #i1 #i #_ #IH #f2 #f1 #H elim (after_inv_O3 … H) -H - #g2 #g1 #Hu #H1 #H2 destruct elim (IH … Hu) -f - /3 width=3 by at_S1, ex2_intro/ -| #f #b #i1 #i #_ #IH #f2 #f1 #H elim (after_inv_S3 … H) -H * - [ #g2 #g1 #b2 #Hu #H1 #H2 destruct elim (IH … Hu) -f -b - /3 width=3 by at_S1, at_lift, ex2_intro/ - | #g1 #b1 #Hu #H destruct elim (IH … Hu) -f -b - /3 width=3 by at_lift, ex2_intro/ - ] +lemma after_inv_xnx: ∀f2,g2,f,n2,n. n2⨮f2 ⊚ g2 ≘ n⨮f → ∀f1. ↑f1 = g2 → + ∃∃m. f2 ⊚ f1 ≘ m⨮f & ↑(n2+m) = n. +#f2 #g2 #f #n2 elim n2 -n2 +[ #n #Hf #f1 #H2 elim (after_inv_pnx … Hf … H2) -g2 [2,3: // ] + #g #Hf #H elim (next_inv_seq_dx … H) -H + #x #Hx #Hg destruct /2 width=3 by ex2_intro/ +| #n2 #IH #n #Hf #f1 #H2 elim (after_inv_nxx … Hf) -Hf [2,3: // ] + #g #Hg #H elim (next_inv_seq_dx … H) -H + #x #Hx #H destruct elim (IH … Hg) -IH -Hg [2,3: // ] + #m #Hf #Hm destruct /2 width=3 by ex2_intro/ ] qed-. -lemma after_at1_fwd: ∀f1,i1,i2. @⦃i1, f1⦄ ≡ i2 → ∀f2,f. f2 ⊚ f1 ≡ f → - ∃∃i. @⦃i2, f2⦄ ≡ i & @⦃i1, f⦄ ≡ i. -#f1 #i1 #i2 #H elim H -f1 -i1 -i2 -[ #f1 #f2 #f #H elim (after_inv_O2 … H) -H /2 width=3 by ex2_intro/ -| #f1 #i1 #i2 #_ #IH * #b2 elim b2 -b2 - [ #f2 #f #H elim (after_inv_zero … H) -H - #g #Hu #H destruct elim (IH … Hu) -f1 - /3 width=3 by at_S1, at_skip, ex2_intro/ - | -IH #b2 #IH #f2 #f #H elim (after_inv_S1 … H) -H - #g #b #Hu #H destruct elim (IH … Hu) -f1 - /3 width=3 by at_lift, ex2_intro/ - ] -| #f1 #b1 #i1 #i2 #_ #IH * #b2 elim b2 -b2 - [ #f2 #f #H elim (after_inv_skip … H) -H - #g #a #Hu #H destruct elim (IH … Hu) -f1 -b1 - /3 width=3 by at_S1, at_lift, ex2_intro/ - | -IH #b2 #IH #f2 #f #H elim (after_inv_S1 … H) -H - #g #b #Hu #H destruct elim (IH … Hu) -f1 -b1 - /3 width=3 by at_lift, ex2_intro/ - ] +lemma after_inv_const: ∀f2,f1,f,n1,n. n⨮f2 ⊚ n1⨮f1 ≘ n⨮f → f2 ⊚ f1 ≘ f ∧ 0 = n1. +#f2 #f1 #f #n1 #n elim n -n +[ #H elim (after_inv_pxp … H) -H [ |*: // ] + #g2 #Hf #H elim (push_inv_seq_dx … H) -H /2 width=1 by conj/ +| #n #IH #H lapply (after_inv_nxn … H ????) -H /2 width=5 by/ ] qed-. -lemma after_fwd_at: ∀f1,f2,i1,i2,i. @⦃i1, f1⦄ ≡ i2 → @⦃i2, f2⦄ ≡ i → - ∀f. f2 ⊚ f1 ≡ f → @⦃i1, f⦄ ≡ i. -#f1 #f2 #i1 #i2 #i #Hi1 #Hi2 #f #Ht elim (after_at1_fwd … Hi1 … Ht) -f1 -#j #H #Hj >(at_mono … H … Hi2) -i2 // -qed-. - -lemma after_fwd_at1: ∀f2,f,i1,i2,i. @⦃i1, f⦄ ≡ i → @⦃i2, f2⦄ ≡ i → - ∀f1. f2 ⊚ f1 ≡ f → @⦃i1, f1⦄ ≡ i2. -#f2 #f #i1 #i2 #i #Hi1 #Hi2 #f1 #Ht elim (after_at_fwd … Hi1 … Ht) -f -#j1 #Hij1 #H >(at_inj … Hi2 … H) -i // -qed-. - -lemma after_fwd_at2: ∀f,i1,i. @⦃i1, f⦄ ≡ i → ∀f1,i2. @⦃i1, f1⦄ ≡ i2 → - ∀f2. f2 ⊚ f1 ≡ f → @⦃i2, f2⦄ ≡ i. -#f #i1 #i #H elim H -f -i1 -i -[ #f #f1 #i2 #Ht1 #f2 #H elim (after_inv_O3 … H) -H - #g2 #g1 #_ #H1 #H2 destruct >(at_inv_OOx … Ht1) -f -g1 -i2 // -| #f #i1 #i #_ #IH #f1 #i2 #Ht1 #f2 #H elim (after_inv_O3 … H) -H - #g2 #g1 #Hu #H1 #H2 destruct elim (at_inv_SOx … Ht1) -Ht1 - /3 width=3 by at_skip/ -| #f #b #i1 #i #_ #IH #f1 #i2 #Ht1 #f2 #H elim (after_inv_S3 … H) -H * - [ #g2 #g1 #a1 #Hu #H1 #H2 destruct elim (at_inv_xSx … Ht1) -Ht1 - /3 width=3 by at_skip/ - | #g2 #a2 #Hu #H destruct /3 width=3 by at_lift/ - ] -] -qed-. +lemma after_inv_total: ∀f2,f1,f. f2 ⊚ f1 ≘ f → f2 ∘ f1 ≡ f. +/2 width=4 by after_mono/ qed-. -(* Advanced forward lemmas on after *****************************************) +(* Specific forward lemmas on after *****************************************) -lemma after_fwd_hd: ∀f1,f2,f,a2,a. f1 ⊚ a2@f2 ≡ a@f → a = f1@❴a2❵. -#f1 #f2 #f #a2 #a #Ht lapply (after_fwd_at … 0 … Ht) -Ht [4: // | // |2,3: skip ] +lemma after_fwd_hd: ∀f2,f1,f,n1,n. f2 ⊚ n1⨮f1 ≘ n⨮f → f2@❨n1❩ = n. +#f2 #f1 #f #n1 #n #H lapply (after_fwd_at ? n1 0 … H) -H [1,2,3: // ] /3 width=2 by at_inv_O1, sym_eq/ qed-. -lemma after_fwd_tl: ∀f,f2,a2,f1,a1,a. a1@f1 ⊚ a2@f2 ≡ a@f → - tln … a2 f1 ⊚ f2 ≡ f. -#f #f2 #a2 elim a2 -a2 -[ #f1 #a1 #a #Ht elim (after_inv_O2_aux2 … Ht) -Ht // -| #a2 #IH * #b1 #f1 #a1 #a #Ht - lapply (after_fwd_hd … Ht) #Ha - lapply (after_inv_S2 … Ht … Ha) -a - /2 width=3 by/ -] -qed-. - -lemma after_inv_apply: ∀f1,f2,f,a1,a2,a. a1@f1 ⊚ a2@f2 ≡ a@f → - a = (a1@f1)@❴a2❵ ∧ tln … a2 f1 ⊚ f2 ≡ f. -/3 width=3 by after_fwd_tl, after_fwd_hd, conj/ qed-. - -(* Main properties on after *************************************************) - -let corec after_trans1: ∀f1,f2,f0. f1 ⊚ f2 ≡ f0 → - ∀f3,f4. f0 ⊚ f3 ≡ f4 → - ∀f. f2 ⊚ f3 ≡ f → f1 ⊚ f ≡ f4 ≝ ?. -#f1 #f2 #f0 * -f1 -f2 -f0 #f1 #f2 #f0 #b1 [1,2: #b2 ] #b0 -[ #Ht0 #H1 #H2 #H0 * #b3 #f3 * #b4 #f4 #Ht4 * #b #f #Ht - cases (after_inv_O1_aux2 … Ht4 H0) -Ht4 -H0 * - [ #Ht4 #H3 #H4 cases (after_inv_zero_aux2 … Ht H2 H3) -Ht -H2 -H3 - #Ht #H /3 width=6 by after_zero/ - | #a0 #a4 #Ht4 #H3 #H4 cases (after_inv_skip_aux2 … Ht H2 … H3) -Ht -H2 -H3 - #a #Ht3 #H /3 width=6 by after_skip/ - ] -| #a2 #a0 #Ht0 #H1 #H2 #H0 #f3 * #b4 #f4 #Ht4 cases (after_inv_S1_aux2 … Ht4 … H0) -Ht4 -H0 - #a4 #Ht4 #H4 * #b #f #H cases (after_inv_S1_aux2 … H … H2) -H -H2 - #a #Ht3 #H /3 width=6 by after_skip/ -| #a1 #a0 #Ht0 #H1 #H0 #f3 * #b4 #f4 #Ht4 cases (after_inv_S1_aux2 … Ht4 … H0) -Ht4 -H0 - #a4 #Ht4 #H4 * #b #f #Ht /3 width=6 by after_drop/ -] -qed-. - -let corec after_trans2: ∀f1,f0,f4. f1 ⊚ f0 ≡ f4 → - ∀f2, f3. f2 ⊚ f3 ≡ f0 → - ∀f. f1 ⊚ f2 ≡ f → f ⊚ f3 ≡ f4 ≝ ?. -#f1 #f0 #f4 * -f1 -f0 -f4 #f1 #f0 #f4 #b1 [1,2: #b0 ] #b4 -[ #Ht4 #H1 #H0 #H4 * #b2 #f2 * #b3 #f3 #Ht0 * #b #f #Ht - cases (after_inv_O3_aux2 … Ht0 H0) -b0 - #Ht0 #H2 #H3 cases (after_inv_zero_aux2 … Ht H1 H2) -b1 -b2 - #Ht #H /3 width=6 by after_zero/ -| #a0 #a4 #Ht4 #H1 #H0 #H4 * #b2 #f2 * #b3 #f3 #Ht0 * #b #f #Ht - cases (after_inv_S3_aux2 … Ht0 … H0) -b0 * - [ #a3 #Ht0 #H2 #H3 cases (after_inv_zero_aux2 … Ht H1 H2) -b1 -b2 - #Ht #H /3 width=6 by after_skip/ - | #a2 #Ht0 #H2 cases (after_inv_skip_aux2 … Ht H1 … H2) -b1 -b2 - #a #Ht #H /3 width=6 by after_drop/ - ] -| #a1 #a4 #Ht4 #H1 #H4 * #b2 #f2 * #b3 #f3 #Ht0 * #b #f #Ht - cases (after_inv_S1_aux2 … Ht … H1) -b1 - #a #Ht #H /3 width=6 by after_drop/ +lemma after_fwd_tls: ∀f,f1,n1,f2,n2,n. n2⨮f2 ⊚ n1⨮f1 ≘ n⨮f → + (⫰*[n1]f2) ⊚ f1 ≘ f. +#f #f1 #n1 elim n1 -n1 +[ #f2 #n2 #n #H elim (after_inv_xpx … H) -H // +| #n1 #IH * #m1 #f2 #n2 #n #H elim (after_inv_xnx … H) -H [2,3: // ] + #m #Hm #H destruct /2 width=3 by/ ] qed-. -let corec after_mono: ∀f1,f2,x. f1 ⊚ f2 ≡ x → ∀y. f1 ⊚ f2 ≡ y → x ≐ y ≝ ?. -* #a1 #f1 * #a2 #f2 * #c #x #Hx * #d #y #Hy -cases (after_inv_apply … Hx) -Hx #Hc #Hx -cases (after_inv_apply … Hy) -Hy #Hd #Hy -/3 width=4 by eq_seq/ -qed-. +lemma after_inv_apply: ∀f2,f1,f,n2,n1,n. n2⨮f2 ⊚ n1⨮f1 ≘ n⨮f → + (n2⨮f2)@❨n1❩ = n ∧ (⫰*[n1]f2) ⊚ f1 ≘ f. +/3 width=3 by after_fwd_tls, after_fwd_hd, conj/ qed-. -let corec after_inj: ∀f1,x,f. f1 ⊚ x ≡ f → ∀y. f1 ⊚ y ≡ f → x ≐ y ≝ ?. -* #a1 #f1 * #c #x * #a #f #Hx * #d #y #Hy -cases (after_inv_apply … Hx) -Hx #Hc #Hx -cases (after_inv_apply … Hy) -Hy #Hd -cases (apply_inj_aux … Hc Hd) // -#Hy -a -d /3 width=4 by eq_seq/ -qed-. +(* Properties on apply ******************************************************) -(* Main inversion lemmas on after *******************************************) - -theorem after_inv_total: ∀f1,f2,f. f1 ⊚ f2 ≡ f → f1 ∘ f2 ≐ f. -/2 width=4 by after_mono/ qed-. +lemma compose_apply (f2) (f1) (i): f2@❨f1@❨i❩❩ = (f2∘f1)@❨i❩. +/4 width=6 by after_fwd_at, at_inv_total, sym_eq/ qed.