X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fground_2%2Frelocation%2Fnstream_after.ma;h=ca3ad7bc7c44535ed250d434ea40d6549336f835;hb=bd53c4e895203eb049e75434f638f26b5a161a2b;hp=b11f32e153bd5b0943c5f8446f6b24fdbf78b3e4;hpb=802e118337ebd0f8b732d4939973aae6415b5bec;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_after.ma b/matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_after.ma index b11f32e15..ca3ad7bc7 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_after.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_after.ma @@ -12,433 +12,147 @@ (* *) (**************************************************************************) -include "ground_2/notation/relations/rafter_3.ma". -include "ground_2/lib/streams_hdtl.ma". -include "ground_2/relocation/nstream_at.ma". +include "ground_2/relocation/nstream_istot.ma". +include "ground_2/relocation/rtmap_after.ma". (* RELOCATION N-STREAM ******************************************************) -let corec compose: rtmap → rtmap → rtmap ≝ ?. -#f1 * #n2 #f2 @(seq … (f1@❴n2❵)) @(compose ? f2) -compose -f2 -@(tln … (⫯n2) f1) +corec definition compose: rtmap → rtmap → rtmap. +#f2 * #n1 #f1 @(seq … (f2@❨n1❩)) @(compose ? f1) -compose -f1 +@(⫰*[↑n1] f2) defined. interpretation "functional composition (nstream)" - 'compose f1 f2 = (compose f1 f2). - -coinductive after: relation3 rtmap rtmap rtmap ≝ -| after_refl: ∀f1,f2,f,g1,g2,g. - after f1 f2 f → g1 = ↑f1 → g2 = ↑f2 → g = ↑f → after g1 g2 g -| after_push: ∀f1,f2,f,g1,g2,g. - after f1 f2 f → g1 = ↑f1 → g2 = ⫯f2 → g = ⫯f → after g1 g2 g -| after_next: ∀f1,f2,f,g1,g. - after f1 f2 f → g1 = ⫯f1 → g = ⫯f → after g1 f2 g -. - -interpretation "relational composition (nstream)" - 'RAfter f1 f2 f = (after f1 f2 f). + 'compose f2 f1 = (compose f2 f1). (* Basic properies on compose ***********************************************) -lemma compose_unfold: ∀f1,f2,n2. f1∘(n2@f2) = f1@❴n2❵@tln … (⫯n2) f1∘f2. -#f1 #f2 #n2 >(stream_expand … (f1∘(n2@f2))) normalize // +lemma compose_rew: ∀f2,f1,n1. f2@❨n1❩⨮(⫰*[↑n1]f2)∘f1 = f2∘(n1⨮f1). +#f2 #f1 #n1 <(stream_rew … (f2∘(n1⨮f1))) normalize // qed. -lemma compose_next: ∀f1,f2,f. f1∘f2 = f → (⫯f1)∘f2 = ⫯f. -* #n1 #f1 * #n2 #f2 #f >compose_unfold >compose_unfold -#H destruct normalize // +lemma compose_next: ∀f2,f1,f. f2∘f1 = f → (↑f2)∘f1 = ↑f. +#f2 * #n1 #f1 #f (stream_expand … (f1∘(n2@f2))) normalize +lemma compose_inv_rew: ∀f2,f1,f,n1,n. f2∘(n1⨮f1) = n⨮f → + f2@❨n1❩ = n ∧ (⫰*[↑n1]f2)∘f1 = f. +#f2 #f1 #f #n1 #n <(stream_rew … (f2∘(n1⨮f1))) normalize #H destruct /2 width=1 by conj/ qed-. -lemma compose_inv_O2: ∀f1,f2,f,n1,n. (n1@f1)∘(↑f2) = n@f → - n = n1 ∧ f1∘f2 = f. -#f1 #f2 #f #n1 #n >compose_unfold +lemma compose_inv_O2: ∀f2,f1,f,n2,n. (n2⨮f2)∘(⫯f1) = n⨮f → + n2 = n ∧ f2∘f1 = f. +#f2 #f1 #f #n2 #n compose_unfold -#H destruct /2 width=1 by conj/ +lemma compose_inv_S2: ∀f2,f1,f,n2,n1,n. (n2⨮f2)∘(↑n1⨮f1) = n⨮f → + ↑(n2+f2@❨n1❩) = n ∧ f2∘(n1⨮f1) = f2@❨n1❩⨮f. +#f2 #f1 #f #n2 #n1 #n compose_unfold -#H destruct /2 width=1 by conj/ +lemma compose_inv_S1: ∀f2,f1,f,n1,n. (↑f2)∘(n1⨮f1) = n⨮f → + ↑(f2@❨n1❩) = n ∧ f2∘(n1⨮f1) = f2@❨n1❩⨮f. +#f2 #f1 #f #n1 #n next_rew #H cases (compose_inv_S1 … H) -H * -n /3 width=5 by after_next/ ] qed-. -theorem after_total: ∀f2,f1. f1 ⊚ f2 ≡ f1 ∘ f2. +theorem after_total: ∀f1,f2. f2 ⊚ f1 ≘ f2 ∘ f1. /2 width=1 by after_total_aux/ qed. -(* Basic inversion lemmas on after ******************************************) - -fact after_inv_OOx_aux: ∀g1,g2,g. g1 ⊚ g2 ≡ g → ∀f1,f2. g1 = ↑f1 → g2 = ↑f2 → - ∃∃f. f1 ⊚ f2 ≡ f & g = ↑f. -#g1 #g2 #g * -g1 -g2 -g #f1 #f2 #f #g1 -[ #g2 #g #Hf #H1 #H2 #H #x1 #x2 #Hx1 #Hx2 destruct - <(injective_push … Hx1) <(injective_push … Hx2) -x2 -x1 - /2 width=3 by ex2_intro/ -| #g2 #g #_ #_ #H2 #_ #x1 #x2 #_ #Hx2 destruct - elim (discr_next_push … Hx2) -| #g #_ #H1 #_ #x1 #x2 #Hx1 #_ destruct - elim (discr_next_push … Hx1) -] -qed-. - -lemma after_inv_OOx: ∀f1,f2,g. ↑f1 ⊚ ↑f2 ≡ g → ∃∃f. f1 ⊚ f2 ≡ f & g = ↑f. -/2 width=5 by after_inv_OOx_aux/ qed-. - -fact after_inv_OSx_aux: ∀g1,g2,g. g1 ⊚ g2 ≡ g → ∀f1,f2. g1 = ↑f1 → g2 = ⫯f2 → - ∃∃f. f1 ⊚ f2 ≡ f & g = ⫯f. -#g1 #g2 #g * -g1 -g2 -g #f1 #f2 #f #g1 -[ #g2 #g #_ #_ #H2 #_ #x1 #x2 #_ #Hx2 destruct - elim (discr_push_next … Hx2) -| #g2 #g #Hf #H1 #H2 #H3 #x1 #x2 #Hx1 #Hx2 destruct - <(injective_push … Hx1) <(injective_next … Hx2) -x2 -x1 - /2 width=3 by ex2_intro/ -| #g #_ #H1 #_ #x1 #x2 #Hx1 #_ destruct - elim (discr_next_push … Hx1) -] -qed-. - -lemma after_inv_OSx: ∀f1,f2,g. ↑f1 ⊚ ⫯f2 ≡ g → ∃∃f. f1 ⊚ f2 ≡ f & g = ⫯f. -/2 width=5 by after_inv_OSx_aux/ qed-. - -fact after_inv_Sxx_aux: ∀g1,f2,g. g1 ⊚ f2 ≡ g → ∀f1. g1 = ⫯f1 → - ∃∃f. f1 ⊚ f2 ≡ f & g = ⫯f. -#g1 #f2 #g * -g1 -f2 -g #f1 #f2 #f #g1 -[ #g2 #g #_ #H1 #_ #_ #x1 #Hx1 destruct - elim (discr_push_next … Hx1) -| #g2 #g #_ #H1 #_ #_ #x1 #Hx1 destruct - elim (discr_push_next … Hx1) -| #g #Hf #H1 #H #x1 #Hx1 destruct - <(injective_next … Hx1) -x1 - /2 width=3 by ex2_intro/ -] -qed-. - -lemma after_inv_Sxx: ∀f1,f2,g. ⫯f1 ⊚ f2 ≡ g → ∃∃f. f1 ⊚ f2 ≡ f & g = ⫯f. -/2 width=5 by after_inv_Sxx_aux/ qed-. - -(* Advanced inversion lemmas on after ***************************************) - -fact after_inv_OOO_aux: ∀g1,g2,g. g1 ⊚ g2 ≡ g → - ∀f1,f2,f. g1 = ↑f1 → g2 = ↑f2 → g = ↑f → f1 ⊚ f2 ≡ f. -#g1 #g2 #g #Hg #f1 #f2 #f #H1 #H2 #H elim (after_inv_OOx_aux … Hg … H1 H2) -g1 -g2 -#x #Hf #Hx destruct >(injective_push … Hx) -f // -qed-. - -fact after_inv_OOS_aux: ∀g1,g2,g. g1 ⊚ g2 ≡ g → - ∀f1,f2,f. g1 = ↑f1 → g2 = ↑f2 → g = ⫯f → ⊥. -#g1 #g2 #g #Hg #f1 #f2 #f #H1 #H2 #H elim (after_inv_OOx_aux … Hg … H1 H2) -g1 -g2 -#x #Hf #Hx destruct elim (discr_next_push … Hx) -qed-. - -fact after_inv_OSS_aux: ∀g1,g2,g. g1 ⊚ g2 ≡ g → - ∀f1,f2,f. g1 = ↑f1 → g2 = ⫯f2 → g = ⫯f → f1 ⊚ f2 ≡ f. -#g1 #g2 #g #Hg #f1 #f2 #f #H1 #H2 #H elim (after_inv_OSx_aux … Hg … H1 H2) -g1 -g2 -#x #Hf #Hx destruct >(injective_next … Hx) -f // -qed-. - -fact after_inv_OSO_aux: ∀g1,g2,g. g1 ⊚ g2 ≡ g → - ∀f1,f2,f. g1 = ↑f1 → g2 = ⫯f2 → g = ↑f → ⊥. -#g1 #g2 #g #Hg #f1 #f2 #f #H1 #H2 #H elim (after_inv_OSx_aux … Hg … H1 H2) -g1 -g2 -#x #Hf #Hx destruct elim (discr_push_next … Hx) -qed-. - -fact after_inv_SxS_aux: ∀g1,f2,g. g1 ⊚ f2 ≡ g → - ∀f1,f. g1 = ⫯f1 → g = ⫯f → f1 ⊚ f2 ≡ f. -#g1 #f2 #g #Hg #f1 #f #H1 #H elim (after_inv_Sxx_aux … Hg … H1) -g1 -#x #Hf #Hx destruct >(injective_next … Hx) -f // -qed-. - -fact after_inv_SxO_aux: ∀g1,f2,g. g1 ⊚ f2 ≡ g → - ∀f1,f. g1 = ⫯f1 → g = ↑f → ⊥. -#g1 #f2 #g #Hg #f1 #f #H1 #H elim (after_inv_Sxx_aux … Hg … H1) -g1 -#x #Hf #Hx destruct elim (discr_push_next … Hx) -qed-. - -fact after_inv_OxO_aux: ∀g1,g2,g. g1 ⊚ g2 ≡ g → - ∀f1,f. g1 = ↑f1 → g = ↑f → - ∃∃f2. f1 ⊚ f2 ≡ f & g2 = ↑f2. -#g1 * * [2: #m2] #g2 #g #Hg #f1 #f #H1 #H -[ elim (after_inv_OSO_aux … Hg … H1 … H) -g1 -g -f1 -f // -| lapply (after_inv_OOO_aux … Hg … H1 … H) -g1 -g /2 width=3 by ex2_intro/ -] -qed-. - -lemma after_inv_OxO: ∀f1,g2,f. ↑f1 ⊚ g2 ≡ ↑f → - ∃∃f2. f1 ⊚ f2 ≡ f & g2 = ↑f2. -/2 width=5 by after_inv_OxO_aux/ qed-. - -fact after_inv_OxS_aux: ∀g1,g2,g. g1 ⊚ g2 ≡ g → - ∀f1,f. g1 = ↑f1 → g = ⫯f → - ∃∃f2. f1 ⊚ f2 ≡ f & g2 = ⫯f2. -#g1 * * [2: #m2] #g2 #g #Hg #f1 #f #H1 #H -[ lapply (after_inv_OSS_aux … Hg … H1 … H) -g1 -g /2 width=3 by ex2_intro/ -| elim (after_inv_OOS_aux … Hg … H1 … H) -g1 -g -f1 -f // -] -qed-. - -fact after_inv_xxO_aux: ∀g1,g2,g. g1 ⊚ g2 ≡ g → ∀f. g = ↑f → - ∃∃f1,f2. f1 ⊚ f2 ≡ f & g1 = ↑f1 & g2 = ↑f2. -* * [2: #m1 ] #g1 #g2 #g #Hg #f #H -[ elim (after_inv_SxO_aux … Hg … H) -g2 -g -f // -| elim (after_inv_OxO_aux … Hg … H) -g /2 width=5 by ex3_2_intro/ -] -qed-. - -lemma after_inv_xxO: ∀g1,g2,f. g1 ⊚ g2 ≡ ↑f → - ∃∃f1,f2. f1 ⊚ f2 ≡ f & g1 = ↑f1 & g2 = ↑f2. -/2 width=3 by after_inv_xxO_aux/ qed-. - -fact after_inv_xxS_aux: ∀g1,g2,g. g1 ⊚ g2 ≡ g → ∀f. g = ⫯f → - (∃∃f1,f2. f1 ⊚ f2 ≡ f & g1 = ↑f1 & g2 = ⫯f2) ∨ - ∃∃f1. f1 ⊚ g2 ≡ f & g1 = ⫯f1. -* * [2: #m1 ] #g1 #g2 #g #Hg #f #H -[ /4 width=5 by after_inv_SxS_aux, or_intror, ex2_intro/ -| elim (after_inv_OxS_aux … Hg … H) -g - /3 width=5 by or_introl, ex3_2_intro/ -] -qed-. - -lemma after_inv_xxS: ∀g1,g2,f. g1 ⊚ g2 ≡ ⫯f → - (∃∃f1,f2. f1 ⊚ f2 ≡ f & g1 = ↑f1 & g2 = ⫯f2) ∨ - ∃∃f1. f1 ⊚ g2 ≡ f & g1 = ⫯f1. -/2 width=3 by after_inv_xxS_aux/ qed-. +(* Specific inversion lemmas on after ***************************************) -fact after_inv_xOx_aux: ∀f1,g2,f,n1,n. n1@f1 ⊚ g2 ≡ n@f → ∀f2. g2 = ↑f2 → - f1 ⊚ f2 ≡ f ∧ n1 = n. -#f1 #g2 #f #n1 elim n1 -n1 -[ #n #Hf #f2 #H2 elim (after_inv_OOx_aux … Hf … H2) -g2 [3: // |2: skip ] - #g #Hf #H elim (push_inv_seq_sn … H) -H destruct /2 width=1 by conj/ -| #n1 #IH #n #Hf #f2 #H2 elim (after_inv_Sxx_aux … Hf) -Hf [3: // |2: skip ] - #g1 #Hg #H1 elim (next_inv_seq_sn … H1) -H1 - #x #Hx #H destruct elim (IH … Hg) [2: // |3: skip ] -IH -Hg +lemma after_inv_xpx: ∀f2,g2,f,n2,n. n2⨮f2 ⊚ g2 ≘ n⨮f → ∀f1. ⫯f1 = g2 → + f2 ⊚ f1 ≘ f ∧ n2 = n. +#f2 #g2 #f #n2 elim n2 -n2 +[ #n #Hf #f1 #H2 elim (after_inv_ppx … Hf … H2) -g2 [2,3: // ] + #g #Hf #H elim (push_inv_seq_dx … H) -H destruct /2 width=1 by conj/ +| #n2 #IH #n #Hf #f1 #H2 elim (after_inv_nxx … Hf) -Hf [2,3: // ] + #g1 #Hg #H1 elim (next_inv_seq_dx … H1) -H1 + #x #Hx #H destruct elim (IH … Hg) [2,3: // ] -IH -Hg #H destruct /2 width=1 by conj/ ] qed-. -lemma after_inv_xOx: ∀f1,f2,f,n1,n. n1@f1 ⊚ ↑f2 ≡ n@f → - f1 ⊚ f2 ≡ f ∧ n1 = n. -/2 width=3 by after_inv_xOx_aux/ qed-. - -fact after_inv_xSx_aux: ∀f1,g2,f,n1,n. n1@f1 ⊚ g2 ≡ n@f → ∀f2. g2 = ⫯f2 → - ∃∃m. f1 ⊚ f2 ≡ m@f & n = ⫯(n1+m). -#f1 #g2 #f #n1 elim n1 -n1 -[ #n #Hf #f2 #H2 elim (after_inv_OSx_aux … Hf … H2) -g2 [3: // |2: skip ] - #g #Hf #H elim (next_inv_seq_sn … H) -H +lemma after_inv_xnx: ∀f2,g2,f,n2,n. n2⨮f2 ⊚ g2 ≘ n⨮f → ∀f1. ↑f1 = g2 → + ∃∃m. f2 ⊚ f1 ≘ m⨮f & ↑(n2+m) = n. +#f2 #g2 #f #n2 elim n2 -n2 +[ #n #Hf #f1 #H2 elim (after_inv_pnx … Hf … H2) -g2 [2,3: // ] + #g #Hf #H elim (next_inv_seq_dx … H) -H #x #Hx #Hg destruct /2 width=3 by ex2_intro/ -| #n1 #IH #n #Hf #f2 #H2 elim (after_inv_Sxx_aux … Hf) -Hf [3: // |2: skip ] - #g #Hg #H elim (next_inv_seq_sn … H) -H - #x #Hx #H destruct elim (IH … Hg) -IH -Hg [3: // |2: skip ] +| #n2 #IH #n #Hf #f1 #H2 elim (after_inv_nxx … Hf) -Hf [2,3: // ] + #g #Hg #H elim (next_inv_seq_dx … H) -H + #x #Hx #H destruct elim (IH … Hg) -IH -Hg [2,3: // ] #m #Hf #Hm destruct /2 width=3 by ex2_intro/ ] qed-. -lemma after_inv_xSx: ∀f1,f2,f,n1,n. n1@f1 ⊚ ⫯f2 ≡ n@f → - ∃∃m. f1 ⊚ f2 ≡ m@f & n = ⫯(n1+m). -/2 width=3 by after_inv_xSx_aux/ qed-. - -lemma after_inv_const: ∀f1,f2,f,n2,n. n@f1 ⊚ n2@f2 ≡ n@f → f1 ⊚ f2 ≡ f ∧ n2 = 0. -#f1 #f2 #f #n2 #n elim n -n -[ #H elim (after_inv_OxO … H) -H - #g2 #Hf #H elim (push_inv_seq_sn … H) -H /2 width=1 by conj/ -| #n #IH #H lapply (after_inv_SxS_aux … H ????) -H /2 width=5 by/ +lemma after_inv_const: ∀f2,f1,f,n1,n. n⨮f2 ⊚ n1⨮f1 ≘ n⨮f → f2 ⊚ f1 ≘ f ∧ 0 = n1. +#f2 #f1 #f #n1 #n elim n -n +[ #H elim (after_inv_pxp … H) -H [ |*: // ] + #g2 #Hf #H elim (push_inv_seq_dx … H) -H /2 width=1 by conj/ +| #n #IH #H lapply (after_inv_nxn … H ????) -H /2 width=5 by/ ] qed-. -(* Forward lemmas on application ********************************************) +lemma after_inv_total: ∀f2,f1,f. f2 ⊚ f1 ≘ f → f2 ∘ f1 ≡ f. +/2 width=4 by after_mono/ qed-. -lemma after_at_fwd: ∀f,i1,i. @⦃i1, f⦄ ≡ i → ∀f2,f1. f2 ⊚ f1 ≡ f → - ∃∃i2. @⦃i1, f1⦄ ≡ i2 & @⦃i2, f2⦄ ≡ i. -#f #i1 #i #H elim H -f -i1 -i -[ #f #f2 #f1 #H elim (after_inv_xxO … H) -H - /2 width=3 by at_refl, ex2_intro/ -| #f #i1 #i #_ #IH #f2 #f1 #H elim (after_inv_xxO … H) -H - #g2 #g1 #Hg #H1 #H2 destruct elim (IH … Hg) -f - /3 width=3 by at_S1, ex2_intro/ -| #f #i1 #i #_ #IH #f2 #f1 #H elim (after_inv_xxS … H) -H * - [ #g2 #g1 #Hg #H2 #H1 destruct elim (IH … Hg) -f - /3 width=3 by at_S1, at_next, ex2_intro/ - | #g1 #Hg #H destruct elim (IH … Hg) -f - /3 width=3 by at_next, ex2_intro/ - ] -] -qed-. - -lemma after_at1_fwd: ∀f1,i1,i2. @⦃i1, f1⦄ ≡ i2 → ∀f2,f. f2 ⊚ f1 ≡ f → - ∃∃i. @⦃i2, f2⦄ ≡ i & @⦃i1, f⦄ ≡ i. -#f1 #i1 #i2 #H elim H -f1 -i1 -i2 -[ #f1 * #n2 #f2 * #n #f #H elim (after_inv_xOx … H) -H /2 width=3 by ex2_intro/ -| #f1 #i1 #i2 #_ #IH * #n2 #f2 * #n #f #H elim (after_inv_xOx … H) -H - #Hf #H destruct elim (IH … Hf) -f1 /3 width=3 by at_S1, ex2_intro/ -| #f1 #i1 #i2 #_ #IH * #n2 #f2 * #n #f #H elim (after_inv_xSx … H) -H - #m #Hf #Hm destruct elim (IH … Hf) -f1 - /4 width=3 by at_plus2, at_S1, at_next, ex2_intro/ -] -qed-. - -lemma after_fwd_at: ∀f1,f2,i1,i2,i. @⦃i1, f1⦄ ≡ i2 → @⦃i2, f2⦄ ≡ i → - ∀f. f2 ⊚ f1 ≡ f → @⦃i1, f⦄ ≡ i. -#f1 #f2 #i1 #i2 #i #Hi1 #Hi2 #f #Ht elim (after_at1_fwd … Hi1 … Ht) -f1 -#j #H #Hj >(at_mono … H … Hi2) -i2 // -qed-. - -lemma after_fwd_at1: ∀f2,f,i1,i2,i. @⦃i1, f⦄ ≡ i → @⦃i2, f2⦄ ≡ i → - ∀f1. f2 ⊚ f1 ≡ f → @⦃i1, f1⦄ ≡ i2. -#f2 #f #i1 #i2 #i #Hi1 #Hi2 #f1 #Ht elim (after_at_fwd … Hi1 … Ht) -f -#j1 #Hij1 #H >(at_inj … Hi2 … H) -i // -qed-. +(* Specific forward lemmas on after *****************************************) -lemma after_fwd_at2: ∀f,i1,i. @⦃i1, f⦄ ≡ i → ∀f1,i2. @⦃i1, f1⦄ ≡ i2 → - ∀f2. f2 ⊚ f1 ≡ f → @⦃i2, f2⦄ ≡ i. -#f #i1 #i #H elim H -f -i1 -i -[ #f #f1 #i2 #Ht1 #f2 #H elim (after_inv_xxO … H) -H - #g2 #g1 #_ #H1 #H2 destruct >(at_inv_OOx … Ht1) -f -g1 -i2 // -| #f #i1 #i #_ #IH #f1 #i2 #Ht1 #f2 #H elim (after_inv_xxO … H) -H - #g2 #g1 #Hu #H1 #H2 destruct elim (at_inv_SOx … Ht1) -Ht1 - /3 width=3 by at_push/ -| #f #i1 #i #_ #IH #f1 #i2 #Hf1 #f2 #H elim (after_inv_xxS … H) -H * - [ #g2 #g1 #Hg #H2 #H1 destruct elim (at_inv_xSx … Hf1) -Hf1 - /3 width=3 by at_push/ - | #g2 #Hg #H destruct /3 width=3 by at_next/ - ] -] -qed-. - -(* Advanced forward lemmas on after *****************************************) - -lemma after_fwd_hd: ∀f1,f2,f,n2,n. f1 ⊚ n2@f2 ≡ n@f → n = f1@❴n2❵. -#f1 #f2 #f #n2 #n #H lapply (after_fwd_at … 0 … H) -H [1,4: // |2,3: skip ] +lemma after_fwd_hd: ∀f2,f1,f,n1,n. f2 ⊚ n1⨮f1 ≘ n⨮f → f2@❨n1❩ = n. +#f2 #f1 #f #n1 #n #H lapply (after_fwd_at ? n1 0 … H) -H [1,2,3: // ] /3 width=2 by at_inv_O1, sym_eq/ qed-. -lemma after_fwd_tl: ∀f,f2,n2,f1,n1,n. n1@f1 ⊚ n2@f2 ≡ n@f → - tln … n2 f1 ⊚ f2 ≡ f. -#f #f2 #n2 elim n2 -n2 -[ #f1 #n1 #n #H elim (after_inv_xOx … H) -H // -| #n2 #IH * #m1 #f1 #n1 #n #H elim (after_inv_xSx_aux … H ??) -H [3: // |2: skip ] +lemma after_fwd_tls: ∀f,f1,n1,f2,n2,n. n2⨮f2 ⊚ n1⨮f1 ≘ n⨮f → + (⫰*[n1]f2) ⊚ f1 ≘ f. +#f #f1 #n1 elim n1 -n1 +[ #f2 #n2 #n #H elim (after_inv_xpx … H) -H // +| #n1 #IH * #m1 #f2 #n2 #n #H elim (after_inv_xnx … H) -H [2,3: // ] #m #Hm #H destruct /2 width=3 by/ ] qed-. -lemma after_inv_apply: ∀f1,f2,f,a1,a2,a. a1@f1 ⊚ a2@f2 ≡ a@f → - a = (a1@f1)@❴a2❵ ∧ tln … a2 f1 ⊚ f2 ≡ f. -/3 width=3 by after_fwd_tl, after_fwd_hd, conj/ qed-. - -(* Main properties on after *************************************************) - -let corec after_trans1: ∀f0,f3,f4. f0 ⊚ f3 ≡ f4 → - ∀f1,f2. f1 ⊚ f2 ≡ f0 → - ∀f. f2 ⊚ f3 ≡ f → f1 ⊚ f ≡ f4 ≝ ?. -#f0 #f3 #f4 * -f0 -f3 -f4 #f0 #f3 #f4 #g0 [1,2: #g3 ] #g4 -[ #Hf4 #H0 #H3 #H4 #g1 #g2 #Hg0 #g #Hg - cases (after_inv_xxO_aux … Hg0 … H0) -g0 - #f1 #f2 #Hf0 #H1 #H2 - cases (after_inv_OOx_aux … Hg … H2 H3) -g2 -g3 - #f #Hf #H /3 width=7 by after_refl/ -| #Hf4 #H0 #H3 #H4 #g1 #g2 #Hg0 #g #Hg - cases (after_inv_xxO_aux … Hg0 … H0) -g0 - #f1 #f2 #Hf0 #H1 #H2 - cases (after_inv_OSx_aux … Hg … H2 H3) -g2 -g3 - #f #Hf #H /3 width=7 by after_push/ -| #Hf4 #H0 #H4 #g1 #g2 #Hg0 #g #Hg - cases (after_inv_xxS_aux … Hg0 … H0) -g0 * - [ #f1 #f2 #Hf0 #H1 #H2 - cases (after_inv_Sxx_aux … Hg … H2) -g2 - #f #Hf #H /3 width=7 by after_push/ - | #f1 #Hf0 #H1 /3 width=6 by after_next/ - ] -] -qed-. - -let corec after_trans2: ∀f1,f0,f4. f1 ⊚ f0 ≡ f4 → - ∀f2, f3. f2 ⊚ f3 ≡ f0 → - ∀f. f1 ⊚ f2 ≡ f → f ⊚ f3 ≡ f4 ≝ ?. -#f1 #f0 #f4 * -f1 -f0 -f4 #f1 #f0 #f4 #g1 [1,2: #g0 ] #g4 -[ #Hf4 #H1 #H0 #H4 #g2 #g3 #Hg0 #g #Hg - cases (after_inv_xxO_aux … Hg0 … H0) -g0 - #f2 #f3 #Hf0 #H2 #H3 - cases (after_inv_OOx_aux … Hg … H1 H2) -g1 -g2 - #f #Hf #H /3 width=7 by after_refl/ -| #Hf4 #H1 #H0 #H4 #g2 #g3 #Hg0 #g #Hg - cases (after_inv_xxS_aux … Hg0 … H0) -g0 * - [ #f2 #f3 #Hf0 #H2 #H3 - cases (after_inv_OOx_aux … Hg … H1 H2) -g1 -g2 - #f #Hf #H /3 width=7 by after_push/ - | #f2 #Hf0 #H2 - cases (after_inv_OSx_aux … Hg … H1 H2) -g1 -g2 - #f #Hf #H /3 width=6 by after_next/ - ] -| #Hf4 #H1 #H4 #f2 #f3 #Hf0 #g #Hg - cases (after_inv_Sxx_aux … Hg … H1) -g1 - #f #Hg #H /3 width=6 by after_next/ -] -qed-. +lemma after_inv_apply: ∀f2,f1,f,n2,n1,n. n2⨮f2 ⊚ n1⨮f1 ≘ n⨮f → + (n2⨮f2)@❨n1❩ = n ∧ (⫰*[n1]f2) ⊚ f1 ≘ f. +/3 width=3 by after_fwd_tls, after_fwd_hd, conj/ qed-. -(* Main inversion lemmas on after *******************************************) - -let corec after_mono: ∀f1,f2,f,g1,g2,g. f1 ⊚ f2 ≡ f → g1 ⊚ g2 ≡ g → - f1 ≐ g1 → f2 ≐ g2 → f ≐ g ≝ ?. -* #n1 #f1 * #n2 #f2 * #n #f * #m1 #g1 * #m2 #g2 * #m #g #Hf #Hg #H1 #H2 -cases (after_inv_apply … Hf) -Hf #Hn #Hf -cases (after_inv_apply … Hg) -Hg #Hm #Hg -cases (eq_stream_inv_seq ????? H1) -H1 -cases (eq_stream_inv_seq ????? H2) -H2 -/4 width=8 by apply_eq_repl, tln_eq_repl, eq_seq/ -qed-. - -let corec after_inj: ∀f1,f2,f,g1,g2,g. f1 ⊚ f2 ≡ f → g1 ⊚ g2 ≡ g → - f1 ≐ g1 → f ≐ g → f2 ≐ g2 ≝ ?. -* #n1 #f1 * #n2 #f2 * #n #f * #m1 #g1 * #m2 #g2 * #m #g #Hf #Hg #H1 #H2 -cases (after_inv_apply … Hf) -Hf #Hn #Hf -cases (after_inv_apply … Hg) -Hg #Hm #Hg -cases (eq_stream_inv_seq ????? H1) -H1 #Hnm1 #Hfg1 -cases (eq_stream_inv_seq ????? H2) -H2 #Hnm #Hfg -lapply (apply_inj_aux … Hn Hm Hnm ?) -n -m -/4 width=8 by tln_eq_repl, eq_seq/ -qed-. +(* Properties on apply ******************************************************) -theorem after_inv_total: ∀f1,f2,f. f1 ⊚ f2 ≡ f → f1 ∘ f2 ≐ f. -/2 width=8 by after_mono/ qed-. +lemma compose_apply (f2) (f1) (i): f2@❨f1@❨i❩❩ = (f2∘f1)@❨i❩. +/4 width=6 by after_fwd_at, at_inv_total, sym_eq/ qed.