X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fground_2%2Frelocation%2Frtmap_sle.ma;h=c08d574cd83fe438d6a2b90e110803304a905502;hb=bd53c4e895203eb049e75434f638f26b5a161a2b;hp=cebc3aa4a463d03f786933939c3d890999c25f43;hpb=66962864d3703b8f3b44e95d32c03ed50ceee6f1;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_sle.ma b/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_sle.ma index cebc3aa4a..c08d574cd 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_sle.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_sle.ma @@ -18,41 +18,55 @@ include "ground_2/relocation/rtmap_isdiv.ma". (* RELOCATION MAP ***********************************************************) coinductive sle: relation rtmap ≝ -| sle_push: ∀f1,f2,g1,g2. sle f1 f2 → ↑f1 = g1 → ↑f2 = g2 → sle g1 g2 -| sle_next: ∀f1,f2,g1,g2. sle f1 f2 → ⫯f1 = g1 → ⫯f2 = g2 → sle g1 g2 -| sle_weak: ∀f1,f2,g1,g2. sle f1 f2 → ↑f1 = g1 → ⫯f2 = g2 → sle g1 g2 +| sle_push: ∀f1,f2,g1,g2. sle f1 f2 → ⫯f1 = g1 → ⫯f2 = g2 → sle g1 g2 +| sle_next: ∀f1,f2,g1,g2. sle f1 f2 → ↑f1 = g1 → ↑f2 = g2 → sle g1 g2 +| sle_weak: ∀f1,f2,g1,g2. sle f1 f2 → ⫯f1 = g1 → ↑f2 = g2 → sle g1 g2 . interpretation "inclusion (rtmap)" - 'subseteq t1 t2 = (sle t1 t2). + 'subseteq f1 f2 = (sle f1 f2). (* Basic properties *********************************************************) -corec lemma sle_refl: ∀f1,f2. f1 ≗ f2 → f1 ⊆ f2. -#f1 #f2 * -f1 -f2 -#f1 #f2 #g1 #g2 #H12 #H1 #H2 -[ @(sle_push … H1 H2) | @(sle_next … H1 H2) ] -H1 -H2 /2 width=1 by/ +axiom sle_eq_repl_back1: ∀f2. eq_repl_back … (λf1. f1 ⊆ f2). + +lemma sle_eq_repl_fwd1: ∀f2. eq_repl_fwd … (λf1. f1 ⊆ f2). +#f2 @eq_repl_sym /2 width=3 by sle_eq_repl_back1/ +qed-. + +axiom sle_eq_repl_back2: ∀f1. eq_repl_back … (λf2. f1 ⊆ f2). + +lemma sle_eq_repl_fwd2: ∀f1. eq_repl_fwd … (λf2. f1 ⊆ f2). +#f1 @eq_repl_sym /2 width=3 by sle_eq_repl_back2/ +qed-. + +corec lemma sle_refl: ∀f. f ⊆ f. +#f cases (pn_split f) * #g #H +[ @(sle_push … H H) | @(sle_next … H H) ] -H // qed. +lemma sle_refl_eq: ∀f1,f2. f1 ≡ f2 → f1 ⊆ f2. +/2 width=3 by sle_eq_repl_back2/ qed. + (* Basic inversion lemmas ***************************************************) -lemma sle_inv_xp: ∀g1,g2. g1 ⊆ g2 → ∀f2. ↑f2 = g2 → - ∃∃f1. f1 ⊆ f2 & ↑f1 = g1. +lemma sle_inv_xp: ∀g1,g2. g1 ⊆ g2 → ∀f2. ⫯f2 = g2 → + ∃∃f1. f1 ⊆ f2 & ⫯f1 = g1. #g1 #g2 * -g1 -g2 #f1 #f2 #g1 #g2 #H #H1 #H2 #x2 #Hx2 destruct [ lapply (injective_push … Hx2) -Hx2 /2 width=3 by ex2_intro/ ] elim (discr_push_next … Hx2) qed-. -lemma sle_inv_nx: ∀g1,g2. g1 ⊆ g2 → ∀f1. ⫯f1 = g1 → - ∃∃f2. f1 ⊆ f2 & ⫯f2 = g2. +lemma sle_inv_nx: ∀g1,g2. g1 ⊆ g2 → ∀f1. ↑f1 = g1 → + ∃∃f2. f1 ⊆ f2 & ↑f2 = g2. #g1 #g2 * -g1 -g2 #f1 #f2 #g1 #g2 #H #H1 #H2 #x1 #Hx1 destruct [2: lapply (injective_next … Hx1) -Hx1 /2 width=3 by ex2_intro/ ] elim (discr_next_push … Hx1) qed-. -lemma sle_inv_pn: ∀g1,g2. g1 ⊆ g2 → ∀f1,f2. ↑f1 = g1 → ⫯f2 = g2 → f1 ⊆ f2. +lemma sle_inv_pn: ∀g1,g2. g1 ⊆ g2 → ∀f1,f2. ⫯f1 = g1 → ↑f2 = g2 → f1 ⊆ f2. #g1 #g2 * -g1 -g2 #f1 #f2 #g1 #g2 #H #H1 #H2 #x1 #x2 #Hx1 #Hx2 destruct [ elim (discr_next_push … Hx2) @@ -64,25 +78,25 @@ qed-. (* Advanced inversion lemmas ************************************************) -lemma sle_inv_pp: ∀g1,g2. g1 ⊆ g2 → ∀f1,f2. ↑f1 = g1 → ↑f2 = g2 → f1 ⊆ f2. +lemma sle_inv_pp: ∀g1,g2. g1 ⊆ g2 → ∀f1,f2. ⫯f1 = g1 → ⫯f2 = g2 → f1 ⊆ f2. #g1 #g2 #H #f1 #f2 #H1 #H2 elim (sle_inv_xp … H … H2) -g2 #x1 #H #Hx1 destruct lapply (injective_push … Hx1) -Hx1 // qed-. -lemma sle_inv_nn: ∀g1,g2. g1 ⊆ g2 → ∀f1,f2. ⫯f1 = g1 → ⫯f2 = g2 → f1 ⊆ f2. +lemma sle_inv_nn: ∀g1,g2. g1 ⊆ g2 → ∀f1,f2. ↑f1 = g1 → ↑f2 = g2 → f1 ⊆ f2. #g1 #g2 #H #f1 #f2 #H1 #H2 elim (sle_inv_nx … H … H1) -g1 #x2 #H #Hx2 destruct lapply (injective_next … Hx2) -Hx2 // qed-. -lemma sle_inv_px: ∀g1,g2. g1 ⊆ g2 → ∀f1. ↑f1 = g1 → - (∃∃f2. f1 ⊆ f2 & ↑f2 = g2) ∨ ∃∃f2. f1 ⊆ f2 & ⫯f2 = g2. +lemma sle_inv_px: ∀g1,g2. g1 ⊆ g2 → ∀f1. ⫯f1 = g1 → + (∃∃f2. f1 ⊆ f2 & ⫯f2 = g2) ∨ ∃∃f2. f1 ⊆ f2 & ↑f2 = g2. #g1 #g2 elim (pn_split g2) * #f2 #H2 #H #f1 #H1 [ lapply (sle_inv_pp … H … H1 H2) | lapply (sle_inv_pn … H … H1 H2) ] -H -H1 /3 width=3 by ex2_intro, or_introl, or_intror/ qed-. -lemma sle_inv_xn: ∀g1,g2. g1 ⊆ g2 → ∀f2. ⫯f2 = g2 → - (∃∃f1. f1 ⊆ f2 & ↑f1 = g1) ∨ ∃∃f1. f1 ⊆ f2 & ⫯f1 = g1. +lemma sle_inv_xn: ∀g1,g2. g1 ⊆ g2 → ∀f2. ↑f2 = g2 → + (∃∃f1. f1 ⊆ f2 & ⫯f1 = g1) ∨ ∃∃f1. f1 ⊆ f2 & ↑f1 = g1. #g1 #g2 elim (pn_split g1) * #f1 #H1 #H #f2 #H2 [ lapply (sle_inv_pn … H … H1 H2) | lapply (sle_inv_nn … H … H1 H2) ] -H -H2 /3 width=3 by ex2_intro, or_introl, or_intror/ @@ -99,17 +113,17 @@ qed-. (* Properties with iteraded push ********************************************) -lemma sle_pushs: ∀f1,f2. f1 ⊆ f2 → ∀i. ↑*[i] f1 ⊆ ↑*[i] f2. +lemma sle_pushs: ∀f1,f2. f1 ⊆ f2 → ∀i. ⫯*[i] f1 ⊆ ⫯*[i] f2. #f1 #f2 #Hf12 #i elim i -i /2 width=5 by sle_push/ qed. (* Properties with tail *****************************************************) -lemma sle_px_tl: ∀g1,g2. g1 ⊆ g2 → ∀f1. ↑f1 = g1 → f1 ⊆ ⫱g2. +lemma sle_px_tl: ∀g1,g2. g1 ⊆ g2 → ∀f1. ⫯f1 = g1 → f1 ⊆ ⫱g2. #g1 #g2 #H #f1 #H1 elim (sle_inv_px … H … H1) -H -H1 * // qed. -lemma sle_xn_tl: ∀g1,g2. g1 ⊆ g2 → ∀f2. ⫯f2 = g2 → ⫱g1 ⊆ f2. +lemma sle_xn_tl: ∀g1,g2. g1 ⊆ g2 → ∀f2. ↑f2 = g2 → ⫱g1 ⊆ f2. #g1 #g2 #H #f2 #H2 elim (sle_inv_xn … H … H2) -H -H2 * // qed. @@ -122,19 +136,25 @@ qed. (* Inversion lemmas with tail ***********************************************) -lemma sle_inv_tl_sn: ∀f1,f2. ⫱f1 ⊆ f2 → f1 ⊆ ⫯f2. +lemma sle_inv_tl_sn: ∀f1,f2. ⫱f1 ⊆ f2 → f1 ⊆ ↑f2. #f1 elim (pn_split f1) * #g1 #H destruct /2 width=5 by sle_next, sle_weak/ qed-. -lemma sle_inv_tl_dx: ∀f1,f2. f1 ⊆ ⫱f2 → ↑f1 ⊆ f2. +lemma sle_inv_tl_dx: ∀f1,f2. f1 ⊆ ⫱f2 → ⫯f1 ⊆ f2. #f1 #f2 elim (pn_split f2) * #g2 #H destruct /2 width=5 by sle_push, sle_weak/ qed-. +(* Properties with iteraded tail ********************************************) + +lemma sle_tls: ∀f1,f2. f1 ⊆ f2 → ∀i. ⫱*[i] f1 ⊆ ⫱*[i] f2. +#f1 #f2 #Hf12 #i elim i -i /2 width=5 by sle_tl/ +qed. + (* Properties with isid *****************************************************) -corec lemma sle_isid_sn: ∀f1. 𝐈⦃f1⦄ → ∀f2. f1 ⊆ f2. +corec lemma sle_isid_sn: ∀f1. 𝐈❪f1❫ → ∀f2. f1 ⊆ f2. #f1 * -f1 #f1 #g1 #Hf1 #H1 #f2 cases (pn_split f2) * /3 width=5 by sle_weak, sle_push/ @@ -142,7 +162,7 @@ qed. (* Inversion lemmas with isid ***********************************************) -corec lemma sle_inv_isid_dx: ∀f1,f2. f1 ⊆ f2 → 𝐈⦃f2⦄ → 𝐈⦃f1⦄. +corec lemma sle_inv_isid_dx: ∀f1,f2. f1 ⊆ f2 → 𝐈❪f2❫ → 𝐈❪f1❫. #f1 #f2 * -f1 -f2 #f1 #f2 #g1 #g2 #Hf * * #H [2,3: elim (isid_inv_next … H) // ] @@ -152,7 +172,7 @@ qed-. (* Properties with isdiv ****************************************************) -corec lemma sle_isdiv_dx: ∀f2. 𝛀⦃f2⦄ → ∀f1. f1 ⊆ f2. +corec lemma sle_isdiv_dx: ∀f2. 𝛀❪f2❫ → ∀f1. f1 ⊆ f2. #f2 * -f2 #f2 #g2 #Hf2 #H2 #f1 cases (pn_split f1) * /3 width=5 by sle_weak, sle_next/ @@ -160,7 +180,7 @@ qed. (* Inversion lemmas with isdiv **********************************************) -corec lemma sle_inv_isdiv_sn: ∀f1,f2. f1 ⊆ f2 → 𝛀⦃f1⦄ → 𝛀⦃f2⦄. +corec lemma sle_inv_isdiv_sn: ∀f1,f2. f1 ⊆ f2 → 𝛀❪f1❫ → 𝛀❪f2❫. #f1 #f2 * -f1 -f2 #f1 #f2 #g1 #g2 #Hf * * #H [1,3: elim (isdiv_inv_push … H) // ]