X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fground_2%2Fynat%2Fynat_lt.ma;h=5a1bb14dda71e288b35a90a2e77c4ea046657e46;hb=1fd63df4c77f5c24024769432ea8492748b4ac79;hp=b684c0403d4fb146169d0acc84b43b089123debf;hpb=114ab6653242120dca8382327447ac24cb255f42;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/ground_2/ynat/ynat_lt.ma b/matita/matita/contribs/lambdadelta/ground_2/ynat/ynat_lt.ma index b684c0403..5a1bb14dd 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/ynat/ynat_lt.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/ynat/ynat_lt.ma @@ -24,6 +24,16 @@ inductive ylt: relation ynat ≝ interpretation "ynat 'less than'" 'lt x y = (ylt x y). +(* Basic forward lemmas *****************************************************) + +lemma ylt_fwd_gen: ∀x,y. x < y → ∃m. x = yinj m. +#x #y * -x -y /2 width=2 by ex_intro/ +qed-. + +lemma ylt_fwd_lt_O1: ∀x,y:ynat. x < y → 0 < y. +#x #y #H elim H -x -y /3 width=2 by ylt_inj, ltn_to_ltO/ +qed-. + (* Basic inversion lemmas ***************************************************) fact ylt_inv_inj2_aux: ∀x,y. x < y → ∀n. y = yinj n → @@ -44,41 +54,43 @@ lemma ylt_inv_inj: ∀m,n. yinj m < yinj n → m < n. #x #Hx #H destruct // qed-. -fact ylt_inv_Y2_aux: ∀x,y. x < y → y = ∞ → ∃m. x = yinj m. -#x #y * -x -y /2 width=2 by ex_intro/ +lemma ylt_inv_Y1: ∀n. ∞ < n → ⊥. +#n #H elim (ylt_fwd_gen … H) -H +#y #H destruct qed-. -lemma ylt_inv_Y2: ∀x. x < ∞ → ∃m. x = yinj m. -/2 width=3 by ylt_inv_Y2_aux/ qed-. +lemma ylt_inv_Y2: ∀x:ynat. x < ∞ → ∃n. x = yinj n. +* /2 width=2 by ex_intro/ +#H elim (ylt_inv_Y1 … H) +qed-. -lemma ylt_inv_O1: ∀n. 0 < n → ⫯⫰n = n. +lemma ylt_inv_O1: ∀n:ynat. 0 < n → ↑↓n = n. * // #n #H lapply (ylt_inv_inj … H) -H normalize /3 width=1 by S_pred, eq_f/ qed-. (* Inversion lemmas on successor ********************************************) -fact ylt_inv_succ1_aux: ∀x,y. x < y → ∀m. x = ⫯m → ∃∃n. m < n & y = ⫯n. +fact ylt_inv_succ1_aux: ∀x,y:ynat. x < y → ∀m. x = ↑m → m < ↓y ∧ ↑↓y = y. #x #y * -x -y [ #x #y #Hxy #m #H elim (ysucc_inv_inj_sn … H) -H #n #H1 #H2 destruct elim (le_inv_S1 … Hxy) -Hxy - #m #Hnm #H destruct - @(ex2_intro … m) /2 width=1 by ylt_inj/ (**) (* explicit constructor *) + #m #Hnm #H destruct /3 width=1 by ylt_inj, conj/ | #x #y #H elim (ysucc_inv_inj_sn … H) -H - #m #H #_ destruct - @(ex2_intro … (∞)) /2 width=1 by/ (**) (* explicit constructor *) + #m #H #_ destruct /2 width=1 by ylt_Y, conj/ ] qed-. -lemma ylt_inv_succ1: ∀m,y. ⫯m < y → ∃∃n. m < n & y = ⫯n. +lemma ylt_inv_succ1: ∀m,y:ynat. ↑m < y → m < ↓y ∧ ↑↓y = y. /2 width=3 by ylt_inv_succ1_aux/ qed-. -lemma ylt_inv_succ: ∀m,n. ⫯m < ⫯n → m < n. -#m #n #H elim (ylt_inv_succ1 … H) -H -#x #Hx #H destruct // +lemma ylt_inv_succ: ∀m,n. ↑m < ↑n → m < n. +#m #n #H elim (ylt_inv_succ1 … H) -H // qed-. -fact ylt_inv_succ2_aux: ∀x,y. x < y → ∀n. y = ⫯n → x ≤ n. +(* Forward lemmas on successor **********************************************) + +fact ylt_fwd_succ2_aux: ∀x,y. x < y → ∀n. y = ↑n → x ≤ n. #x #y * -x -y [ #x #y #Hxy #m #H elim (ysucc_inv_inj_sn … H) -H #n #H1 #H2 destruct /3 width=1 by yle_inj, le_S_S_to_le/ @@ -86,15 +98,21 @@ fact ylt_inv_succ2_aux: ∀x,y. x < y → ∀n. y = ⫯n → x ≤ n. ] qed-. -(* Forward lemmas on successor **********************************************) +lemma ylt_fwd_succ2: ∀m,n. m < ↑n → m ≤ n. +/2 width=3 by ylt_fwd_succ2_aux/ qed-. -lemma ylt_fwd_succ2: ∀m,n. m < ⫯n → m ≤ n. -/2 width=3 by ylt_inv_succ2_aux/ qed-. +(* inversion and forward lemmas on order ************************************) -(* inversion and forward lemmas on yle **************************************) +lemma ylt_fwd_le_succ1: ∀m,n. m < n → ↑m ≤ n. +#m #n * -m -n /2 width=1 by yle_inj/ +qed-. + +lemma ylt_fwd_le_pred2: ∀x,y:ynat. x < y → x ≤ ↓y. +#x #y #H elim H -x -y /3 width=1 by yle_inj, monotonic_pred/ +qed-. -lemma lt_fwd_le: ∀m:ynat. ∀n:ynat. m < n → m ≤ n. -#m #n * -m -n /3 width=1 by yle_pred_sn, yle_inj, yle_Y/ +lemma ylt_fwd_le: ∀m:ynat. ∀n:ynat. m < n → m ≤ n. +#m #n * -m -n /3 width=1 by lt_to_le, yle_inj/ qed-. lemma ylt_yle_false: ∀m:ynat. ∀n:ynat. m < n → n ≤ m → ⊥. @@ -106,15 +124,53 @@ lemma ylt_yle_false: ∀m:ynat. ∀n:ynat. m < n → n ≤ m → ⊥. ] qed-. +lemma ylt_inv_le: ∀x,y. x < y → x < ∞ ∧ ↑x ≤ y. +#x #y #H elim H -x -y /3 width=1 by yle_inj, conj/ +qed-. + +(* Basic properties *********************************************************) + +lemma ylt_O1: ∀x:ynat. ↑↓x = x → 0 < x. +* // * /2 width=1 by ylt_inj/ normalize +#H destruct +qed. + +lemma yle_inv_succ_sn_lt (x:ynat) (y:ynat): + ↑x ≤ y → ∧∧ x ≤ ↓y & 0 < y. +#x #y #H elim (yle_inv_succ1 … H) -H /3 width=2 by ylt_O1, conj/ +qed-. + +(* Properties on predecessor ************************************************) + +lemma ylt_pred: ∀m,n:ynat. m < n → 0 < m → ↓m < ↓n. +#m #n * -m -n +/4 width=1 by ylt_inv_inj, ylt_inj, monotonic_lt_pred/ +qed. + (* Properties on successor **************************************************) -lemma ylt_O_succ: ∀n. 0 < ⫯n. +lemma ylt_O_succ: ∀x:ynat. 0 < ↑x. * /2 width=1 by ylt_inj/ qed. -(* Properties on yle ********************************************************) +lemma ylt_succ: ∀m,n. m < n → ↑m < ↑n. +#m #n #H elim H -m -n /3 width=1 by ylt_inj, le_S_S/ +qed. + +lemma ylt_succ_Y: ∀x. x < ∞ → ↑x < ∞. +* /2 width=1 by/ qed. -lemma yle_to_ylt_or_eq: ∀m:ynat. ∀n:ynat. m ≤ n → m < n ∨ m = n. +lemma yle_succ1_inj: ∀x. ∀y:ynat. ↑yinj x ≤ y → x < y. +#x * /3 width=1 by yle_inv_inj, ylt_inj/ +qed. + +lemma ylt_succ2_refl: ∀x,y:ynat. x < y → x < ↑x. +#x #y #H elim (ylt_fwd_gen … H) -y /2 width=1 by ylt_inj/ +qed. + +(* Properties on order ******************************************************) + +lemma yle_split_eq: ∀m,n:ynat. m ≤ n → m < n ∨ m = n. #m #n * -m -n [ #m #n #Hmn elim (le_to_or_lt_eq … Hmn) -Hmn /3 width=1 by or_introl, ylt_inj/ @@ -122,6 +178,16 @@ lemma yle_to_ylt_or_eq: ∀m:ynat. ∀n:ynat. m ≤ n → m < n ∨ m = n. ] qed-. +lemma ylt_split: ∀m,n:ynat. m < n ∨ n ≤ m. +#m #n elim (yle_split m n) /2 width=1 by or_intror/ +#H elim (yle_split_eq … H) -H /2 width=1 by or_introl, or_intror/ +qed-. + +lemma ylt_split_eq: ∀m,n:ynat. ∨∨ m < n | n = m | n < m. +#m #n elim (ylt_split m n) /2 width=1 by or3_intro0/ +#H elim (yle_split_eq … H) -H /2 width=1 by or3_intro1, or3_intro2/ +qed-. + lemma ylt_yle_trans: ∀x:ynat. ∀y:ynat. ∀z:ynat. y ≤ z → x < y → x < z. #x #y #z * -y -z [ #y #z #Hyz #H elim (ylt_inv_inj2 … H) -H @@ -138,6 +204,19 @@ lemma yle_ylt_trans: ∀x:ynat. ∀y:ynat. ∀z:ynat. y < z → x ≤ y → x < ] qed-. +lemma le_ylt_trans (x) (y) (z): x ≤ y → yinj y < z → yinj x < z. +/3 width=3 by yle_ylt_trans, yle_inj/ +qed-. + +lemma yle_inv_succ1_lt: ∀x,y:ynat. ↑x ≤ y → 0 < y ∧ x ≤ ↓y. +#x #y #H elim (yle_inv_succ1 … H) -H /3 width=1 by ylt_O1, conj/ +qed-. + +lemma yle_lt: ∀x,y. x < ∞ → ↑x ≤ y → x < y. +#x * // #y #H elim (ylt_inv_Y2 … H) -H #n #H destruct +/3 width=1 by ylt_inj, yle_inv_inj/ +qed-. + (* Main properties **********************************************************) theorem ylt_trans: Transitive … ylt. @@ -147,4 +226,46 @@ theorem ylt_trans: Transitive … ylt. /3 width=3 by transitive_lt, ylt_inj/ (**) (* full auto too slow *) | #x #z #H elim (ylt_yle_false … H) // ] -qed-. +qed-. + +lemma lt_ylt_trans (x) (y) (z): x < y → yinj y < z → yinj x < z. +/3 width=3 by ylt_trans, ylt_inj/ +qed-. + +(* Elimination principles ***************************************************) + +fact ynat_ind_lt_le_aux: ∀R:predicate ynat. + (∀y. (∀x. x < y → R x) → R y) → + ∀y:nat. ∀x. x ≤ y → R x. +#R #IH #y elim y -y +[ #x #H >(yle_inv_O2 … H) -x + @IH -IH #x #H elim (ylt_yle_false … H) -H // +| /5 width=3 by ylt_yle_trans, ylt_fwd_succ2/ +] +qed-. + +fact ynat_ind_lt_aux: ∀R:predicate ynat. + (∀y. (∀x. x < y → R x) → R y) → + ∀y:nat. R y. +/4 width=2 by ynat_ind_lt_le_aux/ qed-. + +lemma ynat_ind_lt: ∀R:predicate ynat. + (∀y. (∀x. x < y → R x) → R y) → + ∀y. R y. +#R #IH * /4 width=1 by ynat_ind_lt_aux/ +@IH #x #H elim (ylt_inv_Y2 … H) -H +#n #H destruct /4 width=1 by ynat_ind_lt_aux/ +qed-. + +fact ynat_f_ind_aux: ∀A. ∀f:A→ynat. ∀R:predicate A. + (∀x. (∀a. f a < x → R a) → ∀a. f a = x → R a) → + ∀x,a. f a = x → R a. +#A #f #R #IH #x @(ynat_ind_lt … x) -x +/3 width=3 by/ +qed-. + +lemma ynat_f_ind: ∀A. ∀f:A→ynat. ∀R:predicate A. + (∀x. (∀a. f a < x → R a) → ∀a. f a = x → R a) → ∀a. R a. +#A #f #R #IH #a +@(ynat_f_ind_aux … IH) -IH [2: // | skip ] +qed-.