X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Flegacy_1%2Fcoq%2Fprops.ma;fp=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Flegacy_1%2Fcoq%2Fprops.ma;h=0000000000000000000000000000000000000000;hb=d2545ffd201b1aa49887313791386add78fa8603;hp=b5069fdf73511272af8581577af1cd7420ac0b2b;hpb=57ae1762497a5f3ea75740e2908e04adb8642cc2;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/legacy_1/coq/props.ma b/matita/matita/contribs/lambdadelta/legacy_1/coq/props.ma deleted file mode 100644 index b5069fdf7..000000000 --- a/matita/matita/contribs/lambdadelta/legacy_1/coq/props.ma +++ /dev/null @@ -1,597 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -(* This file was automatically generated: do not edit *********************) - -include "legacy_1/coq/fwd.ma". - -lemma f_equal: - \forall (A: Type[0]).(\forall (B: Type[0]).(\forall (f: ((A \to -B))).(\forall (x: A).(\forall (y: A).((eq A x y) \to (eq B (f x) (f y))))))) -\def - \lambda (A: Type[0]).(\lambda (B: Type[0]).(\lambda (f: ((A \to -B))).(\lambda (x: A).(\lambda (y: A).(\lambda (H: (eq A x y)).(eq_ind A x -(\lambda (a: A).(eq B (f x) (f a))) (refl_equal B (f x)) y H)))))). - -lemma f_equal2: - \forall (A1: Type[0]).(\forall (A2: Type[0]).(\forall (B: Type[0]).(\forall -(f: ((A1 \to (A2 \to B)))).(\forall (x1: A1).(\forall (y1: A1).(\forall (x2: -A2).(\forall (y2: A2).((eq A1 x1 y1) \to ((eq A2 x2 y2) \to (eq B (f x1 x2) -(f y1 y2))))))))))) -\def - \lambda (A1: Type[0]).(\lambda (A2: Type[0]).(\lambda (B: Type[0]).(\lambda -(f: ((A1 \to (A2 \to B)))).(\lambda (x1: A1).(\lambda (y1: A1).(\lambda (x2: -A2).(\lambda (y2: A2).(\lambda (H: (eq A1 x1 y1)).(eq_ind A1 x1 (\lambda (a: -A1).((eq A2 x2 y2) \to (eq B (f x1 x2) (f a y2)))) (\lambda (H0: (eq A2 x2 -y2)).(eq_ind A2 x2 (\lambda (a: A2).(eq B (f x1 x2) (f x1 a))) (refl_equal B -(f x1 x2)) y2 H0)) y1 H))))))))). - -lemma f_equal3: - \forall (A1: Type[0]).(\forall (A2: Type[0]).(\forall (A3: Type[0]).(\forall -(B: Type[0]).(\forall (f: ((A1 \to (A2 \to (A3 \to B))))).(\forall (x1: -A1).(\forall (y1: A1).(\forall (x2: A2).(\forall (y2: A2).(\forall (x3: -A3).(\forall (y3: A3).((eq A1 x1 y1) \to ((eq A2 x2 y2) \to ((eq A3 x3 y3) -\to (eq B (f x1 x2 x3) (f y1 y2 y3))))))))))))))) -\def - \lambda (A1: Type[0]).(\lambda (A2: Type[0]).(\lambda (A3: Type[0]).(\lambda -(B: Type[0]).(\lambda (f: ((A1 \to (A2 \to (A3 \to B))))).(\lambda (x1: -A1).(\lambda (y1: A1).(\lambda (x2: A2).(\lambda (y2: A2).(\lambda (x3: -A3).(\lambda (y3: A3).(\lambda (H: (eq A1 x1 y1)).(eq_ind A1 x1 (\lambda (a: -A1).((eq A2 x2 y2) \to ((eq A3 x3 y3) \to (eq B (f x1 x2 x3) (f a y2 y3))))) -(\lambda (H0: (eq A2 x2 y2)).(eq_ind A2 x2 (\lambda (a: A2).((eq A3 x3 y3) -\to (eq B (f x1 x2 x3) (f x1 a y3)))) (\lambda (H1: (eq A3 x3 y3)).(eq_ind A3 -x3 (\lambda (a: A3).(eq B (f x1 x2 x3) (f x1 x2 a))) (refl_equal B (f x1 x2 -x3)) y3 H1)) y2 H0)) y1 H)))))))))))). - -lemma sym_eq: - \forall (A: Type[0]).(\forall (x: A).(\forall (y: A).((eq A x y) \to (eq A y -x)))) -\def - \lambda (A: Type[0]).(\lambda (x: A).(\lambda (y: A).(\lambda (H: (eq A x -y)).(eq_ind A x (\lambda (a: A).(eq A a x)) (refl_equal A x) y H)))). - -lemma eq_ind_r: - \forall (A: Type[0]).(\forall (x: A).(\forall (P: ((A \to Prop))).((P x) \to -(\forall (y: A).((eq A y x) \to (P y)))))) -\def - \lambda (A: Type[0]).(\lambda (x: A).(\lambda (P: ((A \to Prop))).(\lambda -(H: (P x)).(\lambda (y: A).(\lambda (H0: (eq A y x)).(match (sym_eq A y x H0) -with [refl_equal \Rightarrow H])))))). - -lemma trans_eq: - \forall (A: Type[0]).(\forall (x: A).(\forall (y: A).(\forall (z: A).((eq A -x y) \to ((eq A y z) \to (eq A x z)))))) -\def - \lambda (A: Type[0]).(\lambda (x: A).(\lambda (y: A).(\lambda (z: -A).(\lambda (H: (eq A x y)).(\lambda (H0: (eq A y z)).(eq_ind A y (\lambda -(a: A).(eq A x a)) H z H0)))))). - -lemma sym_not_eq: - \forall (A: Type[0]).(\forall (x: A).(\forall (y: A).((not (eq A x y)) \to -(not (eq A y x))))) -\def - \lambda (A: Type[0]).(\lambda (x: A).(\lambda (y: A).(\lambda (h1: (not (eq -A x y))).(\lambda (h2: (eq A y x)).(h1 (eq_ind A y (\lambda (a: A).(eq A a -y)) (refl_equal A y) x h2)))))). - -lemma nat_double_ind: - \forall (R: ((nat \to (nat \to Prop)))).(((\forall (n: nat).(R O n))) \to -(((\forall (n: nat).(R (S n) O))) \to (((\forall (n: nat).(\forall (m: -nat).((R n m) \to (R (S n) (S m)))))) \to (\forall (n: nat).(\forall (m: -nat).(R n m)))))) -\def - \lambda (R: ((nat \to (nat \to Prop)))).(\lambda (H: ((\forall (n: nat).(R O -n)))).(\lambda (H0: ((\forall (n: nat).(R (S n) O)))).(\lambda (H1: ((\forall -(n: nat).(\forall (m: nat).((R n m) \to (R (S n) (S m))))))).(\lambda (n: -nat).(nat_ind (\lambda (n0: nat).(\forall (m: nat).(R n0 m))) H (\lambda (n0: -nat).(\lambda (H2: ((\forall (m: nat).(R n0 m)))).(\lambda (m: nat).(nat_ind -(\lambda (n1: nat).(R (S n0) n1)) (H0 n0) (\lambda (n1: nat).(\lambda (_: (R -(S n0) n1)).(H1 n0 n1 (H2 n1)))) m)))) n))))). - -lemma eq_add_S: - \forall (n: nat).(\forall (m: nat).((eq nat (S n) (S m)) \to (eq nat n m))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (eq nat (S n) (S -m))).(f_equal nat nat pred (S n) (S m) H))). - -lemma O_S: - \forall (n: nat).(not (eq nat O (S n))) -\def - \lambda (n: nat).(\lambda (H: (eq nat O (S n))).(eq_ind nat (S n) (\lambda -(n0: nat).(IsSucc n0)) I O (sym_eq nat O (S n) H))). - -lemma not_eq_S: - \forall (n: nat).(\forall (m: nat).((not (eq nat n m)) \to (not (eq nat (S -n) (S m))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (not (eq nat n m))).(\lambda -(H0: (eq nat (S n) (S m))).(H (eq_add_S n m H0))))). - -lemma pred_Sn: - \forall (m: nat).(eq nat m (pred (S m))) -\def - \lambda (m: nat).(refl_equal nat (pred (S m))). - -lemma S_pred: - \forall (n: nat).(\forall (m: nat).((lt m n) \to (eq nat n (S (pred n))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt m n)).(le_ind (S m) -(\lambda (n0: nat).(eq nat n0 (S (pred n0)))) (refl_equal nat (S (pred (S -m)))) (\lambda (m0: nat).(\lambda (_: (le (S m) m0)).(\lambda (_: (eq nat m0 -(S (pred m0)))).(refl_equal nat (S (pred (S m0))))))) n H))). - -lemma le_trans: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((le n m) \to ((le m p) -\to (le n p))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (le n -m)).(\lambda (H0: (le m p)).(le_ind m (\lambda (n0: nat).(le n n0)) H -(\lambda (m0: nat).(\lambda (_: (le m m0)).(\lambda (IHle: (le n m0)).(le_S n -m0 IHle)))) p H0))))). - -lemma le_trans_S: - \forall (n: nat).(\forall (m: nat).((le (S n) m) \to (le n m))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le (S n) m)).(le_trans n (S -n) m (le_S n n (le_n n)) H))). - -lemma le_n_S: - \forall (n: nat).(\forall (m: nat).((le n m) \to (le (S n) (S m)))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_ind n (\lambda -(n0: nat).(le (S n) (S n0))) (le_n (S n)) (\lambda (m0: nat).(\lambda (_: (le -n m0)).(\lambda (IHle: (le (S n) (S m0))).(le_S (S n) (S m0) IHle)))) m H))). - -lemma le_O_n: - \forall (n: nat).(le O n) -\def - \lambda (n: nat).(nat_ind (\lambda (n0: nat).(le O n0)) (le_n O) (\lambda -(n0: nat).(\lambda (IHn: (le O n0)).(le_S O n0 IHn))) n). - -lemma le_S_n: - \forall (n: nat).(\forall (m: nat).((le (S n) (S m)) \to (le n m))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le (S n) (S m))).(le_ind (S -n) (\lambda (n0: nat).(le (pred (S n)) (pred n0))) (le_n n) (\lambda (m0: -nat).(\lambda (H0: (le (S n) m0)).(\lambda (_: (le n (pred m0))).(le_trans_S -n m0 H0)))) (S m) H))). - -lemma le_Sn_O: - \forall (n: nat).(not (le (S n) O)) -\def - \lambda (n: nat).(\lambda (H: (le (S n) O)).(le_ind (S n) (\lambda (n0: -nat).(IsSucc n0)) I (\lambda (m: nat).(\lambda (_: (le (S n) m)).(\lambda (_: -(IsSucc m)).I))) O H)). - -lemma le_Sn_n: - \forall (n: nat).(not (le (S n) n)) -\def - \lambda (n: nat).(nat_ind (\lambda (n0: nat).(not (le (S n0) n0))) (le_Sn_O -O) (\lambda (n0: nat).(\lambda (IHn: (not (le (S n0) n0))).(\lambda (H: (le -(S (S n0)) (S n0))).(IHn (le_S_n (S n0) n0 H))))) n). - -lemma le_antisym: - \forall (n: nat).(\forall (m: nat).((le n m) \to ((le m n) \to (eq nat n -m)))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (h: (le n m)).(le_ind n (\lambda -(n0: nat).((le n0 n) \to (eq nat n n0))) (\lambda (_: (le n n)).(refl_equal -nat n)) (\lambda (m0: nat).(\lambda (H: (le n m0)).(\lambda (_: (((le m0 n) -\to (eq nat n m0)))).(\lambda (H1: (le (S m0) n)).(False_ind (eq nat n (S -m0)) (let H2 \def (le_trans (S m0) n m0 H1 H) in ((let H3 \def (le_Sn_n m0) -in (\lambda (H4: (le (S m0) m0)).(H3 H4))) H2))))))) m h))). - -lemma le_n_O_eq: - \forall (n: nat).((le n O) \to (eq nat O n)) -\def - \lambda (n: nat).(\lambda (H: (le n O)).(le_antisym O n (le_O_n n) H)). - -lemma le_elim_rel: - \forall (P: ((nat \to (nat \to Prop)))).(((\forall (p: nat).(P O p))) \to -(((\forall (p: nat).(\forall (q: nat).((le p q) \to ((P p q) \to (P (S p) (S -q))))))) \to (\forall (n: nat).(\forall (m: nat).((le n m) \to (P n m)))))) -\def - \lambda (P: ((nat \to (nat \to Prop)))).(\lambda (H: ((\forall (p: nat).(P O -p)))).(\lambda (H0: ((\forall (p: nat).(\forall (q: nat).((le p q) \to ((P p -q) \to (P (S p) (S q)))))))).(\lambda (n: nat).(nat_ind (\lambda (n0: -nat).(\forall (m: nat).((le n0 m) \to (P n0 m)))) (\lambda (m: nat).(\lambda -(_: (le O m)).(H m))) (\lambda (n0: nat).(\lambda (IHn: ((\forall (m: -nat).((le n0 m) \to (P n0 m))))).(\lambda (m: nat).(\lambda (Le: (le (S n0) -m)).(le_ind (S n0) (\lambda (n1: nat).(P (S n0) n1)) (H0 n0 n0 (le_n n0) (IHn -n0 (le_n n0))) (\lambda (m0: nat).(\lambda (H1: (le (S n0) m0)).(\lambda (_: -(P (S n0) m0)).(H0 n0 m0 (le_trans_S n0 m0 H1) (IHn m0 (le_trans_S n0 m0 -H1)))))) m Le))))) n)))). - -lemma lt_n_n: - \forall (n: nat).(not (lt n n)) -\def - le_Sn_n. - -lemma lt_n_S: - \forall (n: nat).(\forall (m: nat).((lt n m) \to (lt (S n) (S m)))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt n m)).(le_n_S (S n) m -H))). - -lemma lt_n_Sn: - \forall (n: nat).(lt n (S n)) -\def - \lambda (n: nat).(le_n (S n)). - -lemma lt_S_n: - \forall (n: nat).(\forall (m: nat).((lt (S n) (S m)) \to (lt n m))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt (S n) (S m))).(le_S_n (S -n) m H))). - -lemma lt_n_O: - \forall (n: nat).(not (lt n O)) -\def - le_Sn_O. - -lemma lt_trans: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt n m) \to ((lt m p) -\to (lt n p))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (lt n -m)).(\lambda (H0: (lt m p)).(le_ind (S m) (\lambda (n0: nat).(lt n n0)) (le_S -(S n) m H) (\lambda (m0: nat).(\lambda (_: (le (S m) m0)).(\lambda (IHle: (lt -n m0)).(le_S (S n) m0 IHle)))) p H0))))). - -lemma lt_O_Sn: - \forall (n: nat).(lt O (S n)) -\def - \lambda (n: nat).(le_n_S O n (le_O_n n)). - -lemma lt_le_S: - \forall (n: nat).(\forall (p: nat).((lt n p) \to (le (S n) p))) -\def - \lambda (n: nat).(\lambda (p: nat).(\lambda (H: (lt n p)).H)). - -lemma le_not_lt: - \forall (n: nat).(\forall (m: nat).((le n m) \to (not (lt m n)))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_ind n (\lambda -(n0: nat).(not (lt n0 n))) (lt_n_n n) (\lambda (m0: nat).(\lambda (_: (le n -m0)).(\lambda (IHle: (not (lt m0 n))).(\lambda (H1: (lt (S m0) n)).(IHle -(le_trans_S (S m0) n H1)))))) m H))). - -lemma le_lt_n_Sm: - \forall (n: nat).(\forall (m: nat).((le n m) \to (lt n (S m)))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_n_S n m H))). - -lemma le_lt_trans: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((le n m) \to ((lt m p) -\to (lt n p))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (le n -m)).(\lambda (H0: (lt m p)).(le_ind (S m) (\lambda (n0: nat).(lt n n0)) -(le_n_S n m H) (\lambda (m0: nat).(\lambda (_: (le (S m) m0)).(\lambda (IHle: -(lt n m0)).(le_S (S n) m0 IHle)))) p H0))))). - -lemma lt_le_trans: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt n m) \to ((le m p) -\to (lt n p))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (lt n -m)).(\lambda (H0: (le m p)).(le_ind m (\lambda (n0: nat).(lt n n0)) H -(\lambda (m0: nat).(\lambda (_: (le m m0)).(\lambda (IHle: (lt n m0)).(le_S -(S n) m0 IHle)))) p H0))))). - -lemma lt_le_weak: - \forall (n: nat).(\forall (m: nat).((lt n m) \to (le n m))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt n m)).(le_trans_S n m -H))). - -lemma lt_n_Sm_le: - \forall (n: nat).(\forall (m: nat).((lt n (S m)) \to (le n m))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt n (S m))).(le_S_n n m -H))). - -lemma le_lt_or_eq: - \forall (n: nat).(\forall (m: nat).((le n m) \to (or (lt n m) (eq nat n m)))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_ind n (\lambda -(n0: nat).(or (lt n n0) (eq nat n n0))) (or_intror (lt n n) (eq nat n n) -(refl_equal nat n)) (\lambda (m0: nat).(\lambda (H0: (le n m0)).(\lambda (_: -(or (lt n m0) (eq nat n m0))).(or_introl (lt n (S m0)) (eq nat n (S m0)) -(le_n_S n m0 H0))))) m H))). - -lemma le_or_lt: - \forall (n: nat).(\forall (m: nat).(or (le n m) (lt m n))) -\def - \lambda (n: nat).(\lambda (m: nat).(nat_double_ind (\lambda (n0: -nat).(\lambda (n1: nat).(or (le n0 n1) (lt n1 n0)))) (\lambda (n0: -nat).(or_introl (le O n0) (lt n0 O) (le_O_n n0))) (\lambda (n0: -nat).(or_intror (le (S n0) O) (lt O (S n0)) (lt_le_S O (S n0) (lt_O_Sn n0)))) -(\lambda (n0: nat).(\lambda (m0: nat).(\lambda (H: (or (le n0 m0) (lt m0 -n0))).(or_ind (le n0 m0) (lt m0 n0) (or (le (S n0) (S m0)) (lt (S m0) (S -n0))) (\lambda (H0: (le n0 m0)).(or_introl (le (S n0) (S m0)) (lt (S m0) (S -n0)) (le_n_S n0 m0 H0))) (\lambda (H0: (lt m0 n0)).(or_intror (le (S n0) (S -m0)) (lt (S m0) (S n0)) (le_n_S (S m0) n0 H0))) H)))) n m)). - -lemma plus_n_O: - \forall (n: nat).(eq nat n (plus n O)) -\def - \lambda (n: nat).(nat_ind (\lambda (n0: nat).(eq nat n0 (plus n0 O))) -(refl_equal nat O) (\lambda (n0: nat).(\lambda (H: (eq nat n0 (plus n0 -O))).(f_equal nat nat S n0 (plus n0 O) H))) n). - -lemma plus_n_Sm: - \forall (n: nat).(\forall (m: nat).(eq nat (S (plus n m)) (plus n (S m)))) -\def - \lambda (m: nat).(\lambda (n: nat).(nat_ind (\lambda (n0: nat).(eq nat (S -(plus n0 n)) (plus n0 (S n)))) (refl_equal nat (S n)) (\lambda (n0: -nat).(\lambda (H: (eq nat (S (plus n0 n)) (plus n0 (S n)))).(f_equal nat nat -S (S (plus n0 n)) (plus n0 (S n)) H))) m)). - -lemma plus_sym: - \forall (n: nat).(\forall (m: nat).(eq nat (plus n m) (plus m n))) -\def - \lambda (n: nat).(\lambda (m: nat).(nat_ind (\lambda (n0: nat).(eq nat (plus -n0 m) (plus m n0))) (plus_n_O m) (\lambda (y: nat).(\lambda (H: (eq nat (plus -y m) (plus m y))).(eq_ind nat (S (plus m y)) (\lambda (n0: nat).(eq nat (S -(plus y m)) n0)) (f_equal nat nat S (plus y m) (plus m y) H) (plus m (S y)) -(plus_n_Sm m y)))) n)). - -lemma plus_Snm_nSm: - \forall (n: nat).(\forall (m: nat).(eq nat (plus (S n) m) (plus n (S m)))) -\def - \lambda (n: nat).(\lambda (m: nat).(eq_ind_r nat (plus m n) (\lambda (n0: -nat).(eq nat (S n0) (plus n (S m)))) (eq_ind_r nat (plus (S m) n) (\lambda -(n0: nat).(eq nat (S (plus m n)) n0)) (refl_equal nat (plus (S m) n)) (plus n -(S m)) (plus_sym n (S m))) (plus n m) (plus_sym n m))). - -lemma plus_assoc_l: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(eq nat (plus n (plus m -p)) (plus (plus n m) p)))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(nat_ind (\lambda (n0: -nat).(eq nat (plus n0 (plus m p)) (plus (plus n0 m) p))) (refl_equal nat -(plus m p)) (\lambda (n0: nat).(\lambda (H: (eq nat (plus n0 (plus m p)) -(plus (plus n0 m) p))).(f_equal nat nat S (plus n0 (plus m p)) (plus (plus n0 -m) p) H))) n))). - -lemma plus_assoc_r: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(eq nat (plus (plus n -m) p) (plus n (plus m p))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(sym_eq nat (plus n -(plus m p)) (plus (plus n m) p) (plus_assoc_l n m p)))). - -lemma simpl_plus_l: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((eq nat (plus n m) -(plus n p)) \to (eq nat m p)))) -\def - \lambda (n: nat).(nat_ind (\lambda (n0: nat).(\forall (m: nat).(\forall (p: -nat).((eq nat (plus n0 m) (plus n0 p)) \to (eq nat m p))))) (\lambda (m: -nat).(\lambda (p: nat).(\lambda (H: (eq nat m p)).H))) (\lambda (n0: -nat).(\lambda (IHn: ((\forall (m: nat).(\forall (p: nat).((eq nat (plus n0 m) -(plus n0 p)) \to (eq nat m p)))))).(\lambda (m: nat).(\lambda (p: -nat).(\lambda (H: (eq nat (S (plus n0 m)) (S (plus n0 p)))).(IHn m p (IHn -(plus n0 m) (plus n0 p) (f_equal nat nat (plus n0) (plus n0 m) (plus n0 p) -(eq_add_S (plus n0 m) (plus n0 p) H))))))))) n). - -lemma minus_n_O: - \forall (n: nat).(eq nat n (minus n O)) -\def - \lambda (n: nat).(nat_ind (\lambda (n0: nat).(eq nat n0 (minus n0 O))) -(refl_equal nat O) (\lambda (n0: nat).(\lambda (_: (eq nat n0 (minus n0 -O))).(refl_equal nat (S n0)))) n). - -lemma minus_n_n: - \forall (n: nat).(eq nat O (minus n n)) -\def - \lambda (n: nat).(nat_ind (\lambda (n0: nat).(eq nat O (minus n0 n0))) -(refl_equal nat O) (\lambda (n0: nat).(\lambda (IHn: (eq nat O (minus n0 -n0))).IHn)) n). - -lemma minus_Sn_m: - \forall (n: nat).(\forall (m: nat).((le m n) \to (eq nat (S (minus n m)) -(minus (S n) m)))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (Le: (le m n)).(le_elim_rel -(\lambda (n0: nat).(\lambda (n1: nat).(eq nat (S (minus n1 n0)) (minus (S n1) -n0)))) (\lambda (p: nat).(f_equal nat nat S (minus p O) p (sym_eq nat p -(minus p O) (minus_n_O p)))) (\lambda (p: nat).(\lambda (q: nat).(\lambda (_: -(le p q)).(\lambda (H0: (eq nat (S (minus q p)) (match p with [O \Rightarrow -(S q) | (S l) \Rightarrow (minus q l)]))).H0)))) m n Le))). - -lemma plus_minus: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((eq nat n (plus m p)) -\to (eq nat p (minus n m))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(nat_double_ind -(\lambda (n0: nat).(\lambda (n1: nat).((eq nat n1 (plus n0 p)) \to (eq nat p -(minus n1 n0))))) (\lambda (n0: nat).(\lambda (H: (eq nat n0 p)).(eq_ind nat -n0 (\lambda (n1: nat).(eq nat p n1)) (sym_eq nat n0 p H) (minus n0 O) -(minus_n_O n0)))) (\lambda (n0: nat).(\lambda (H: (eq nat O (S (plus n0 -p)))).(False_ind (eq nat p O) (let H0 \def H in ((let H1 \def (O_S (plus n0 -p)) in (\lambda (H2: (eq nat O (S (plus n0 p)))).(H1 H2))) H0))))) (\lambda -(n0: nat).(\lambda (m0: nat).(\lambda (H: (((eq nat m0 (plus n0 p)) \to (eq -nat p (minus m0 n0))))).(\lambda (H0: (eq nat (S m0) (S (plus n0 p)))).(H -(eq_add_S m0 (plus n0 p) H0)))))) m n))). - -lemma minus_plus: - \forall (n: nat).(\forall (m: nat).(eq nat (minus (plus n m) n) m)) -\def - \lambda (n: nat).(\lambda (m: nat).(sym_eq nat m (minus (plus n m) n) -(plus_minus (plus n m) n m (refl_equal nat (plus n m))))). - -lemma le_pred_n: - \forall (n: nat).(le (pred n) n) -\def - \lambda (n: nat).(nat_ind (\lambda (n0: nat).(le (pred n0) n0)) (le_n O) -(\lambda (n0: nat).(\lambda (_: (le (pred n0) n0)).(le_S (pred (S n0)) n0 -(le_n n0)))) n). - -lemma le_plus_l: - \forall (n: nat).(\forall (m: nat).(le n (plus n m))) -\def - \lambda (n: nat).(nat_ind (\lambda (n0: nat).(\forall (m: nat).(le n0 (plus -n0 m)))) (\lambda (m: nat).(le_O_n m)) (\lambda (n0: nat).(\lambda (IHn: -((\forall (m: nat).(le n0 (plus n0 m))))).(\lambda (m: nat).(le_n_S n0 (plus -n0 m) (IHn m))))) n). - -lemma le_plus_r: - \forall (n: nat).(\forall (m: nat).(le m (plus n m))) -\def - \lambda (n: nat).(\lambda (m: nat).(nat_ind (\lambda (n0: nat).(le m (plus -n0 m))) (le_n m) (\lambda (n0: nat).(\lambda (H: (le m (plus n0 m))).(le_S m -(plus n0 m) H))) n)). - -lemma simpl_le_plus_l: - \forall (p: nat).(\forall (n: nat).(\forall (m: nat).((le (plus p n) (plus p -m)) \to (le n m)))) -\def - \lambda (p: nat).(nat_ind (\lambda (n: nat).(\forall (n0: nat).(\forall (m: -nat).((le (plus n n0) (plus n m)) \to (le n0 m))))) (\lambda (n: -nat).(\lambda (m: nat).(\lambda (H: (le n m)).H))) (\lambda (p0: -nat).(\lambda (IHp: ((\forall (n: nat).(\forall (m: nat).((le (plus p0 n) -(plus p0 m)) \to (le n m)))))).(\lambda (n: nat).(\lambda (m: nat).(\lambda -(H: (le (S (plus p0 n)) (S (plus p0 m)))).(IHp n m (le_S_n (plus p0 n) (plus -p0 m) H))))))) p). - -lemma le_plus_trans: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((le n m) \to (le n -(plus m p))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (le n -m)).(le_trans n m (plus m p) H (le_plus_l m p))))). - -lemma le_reg_l: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((le n m) \to (le (plus -p n) (plus p m))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(nat_ind (\lambda (n0: -nat).((le n m) \to (le (plus n0 n) (plus n0 m)))) (\lambda (H: (le n m)).H) -(\lambda (p0: nat).(\lambda (IHp: (((le n m) \to (le (plus p0 n) (plus p0 -m))))).(\lambda (H: (le n m)).(le_n_S (plus p0 n) (plus p0 m) (IHp H))))) -p))). - -lemma le_plus_plus: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(\forall (q: nat).((le -n m) \to ((le p q) \to (le (plus n p) (plus m q))))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (q: -nat).(\lambda (H: (le n m)).(\lambda (H0: (le p q)).(le_ind n (\lambda (n0: -nat).(le (plus n p) (plus n0 q))) (le_reg_l p q n H0) (\lambda (m0: -nat).(\lambda (_: (le n m0)).(\lambda (H2: (le (plus n p) (plus m0 q))).(le_S -(plus n p) (plus m0 q) H2)))) m H)))))). - -lemma le_plus_minus: - \forall (n: nat).(\forall (m: nat).((le n m) \to (eq nat m (plus n (minus m -n))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (Le: (le n m)).(le_elim_rel -(\lambda (n0: nat).(\lambda (n1: nat).(eq nat n1 (plus n0 (minus n1 n0))))) -(\lambda (p: nat).(minus_n_O p)) (\lambda (p: nat).(\lambda (q: nat).(\lambda -(_: (le p q)).(\lambda (H0: (eq nat q (plus p (minus q p)))).(f_equal nat nat -S q (plus p (minus q p)) H0))))) n m Le))). - -lemma le_plus_minus_r: - \forall (n: nat).(\forall (m: nat).((le n m) \to (eq nat (plus n (minus m -n)) m))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(sym_eq nat m -(plus n (minus m n)) (le_plus_minus n m H)))). - -lemma simpl_lt_plus_l: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt (plus p n) (plus p -m)) \to (lt n m)))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(nat_ind (\lambda (n0: -nat).((lt (plus n0 n) (plus n0 m)) \to (lt n m))) (\lambda (H: (lt n m)).H) -(\lambda (p0: nat).(\lambda (IHp: (((lt (plus p0 n) (plus p0 m)) \to (lt n -m)))).(\lambda (H: (lt (S (plus p0 n)) (S (plus p0 m)))).(IHp (le_S_n (S -(plus p0 n)) (plus p0 m) H))))) p))). - -lemma lt_reg_l: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt n m) \to (lt (plus -p n) (plus p m))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(nat_ind (\lambda (n0: -nat).((lt n m) \to (lt (plus n0 n) (plus n0 m)))) (\lambda (H: (lt n m)).H) -(\lambda (p0: nat).(\lambda (IHp: (((lt n m) \to (lt (plus p0 n) (plus p0 -m))))).(\lambda (H: (lt n m)).(lt_n_S (plus p0 n) (plus p0 m) (IHp H))))) -p))). - -lemma lt_reg_r: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt n m) \to (lt (plus -n p) (plus m p))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (lt n -m)).(eq_ind_r nat (plus p n) (\lambda (n0: nat).(lt n0 (plus m p))) (eq_ind_r -nat (plus p m) (\lambda (n0: nat).(lt (plus p n) n0)) (nat_ind (\lambda (n0: -nat).(lt (plus n0 n) (plus n0 m))) H (\lambda (n0: nat).(\lambda (_: (lt -(plus n0 n) (plus n0 m))).(lt_reg_l n m (S n0) H))) p) (plus m p) (plus_sym m -p)) (plus n p) (plus_sym n p))))). - -lemma le_lt_plus_plus: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(\forall (q: nat).((le -n m) \to ((lt p q) \to (lt (plus n p) (plus m q))))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (q: -nat).(\lambda (H: (le n m)).(\lambda (H0: (le (S p) q)).(eq_ind_r nat (plus n -(S p)) (\lambda (n0: nat).(le n0 (plus m q))) (le_plus_plus n m (S p) q H H0) -(plus (S n) p) (plus_Snm_nSm n p))))))). - -lemma lt_le_plus_plus: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(\forall (q: nat).((lt -n m) \to ((le p q) \to (lt (plus n p) (plus m q))))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (q: -nat).(\lambda (H: (le (S n) m)).(\lambda (H0: (le p q)).(le_plus_plus (S n) m -p q H H0)))))). - -lemma lt_plus_plus: - \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(\forall (q: nat).((lt -n m) \to ((lt p q) \to (lt (plus n p) (plus m q))))))) -\def - \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (q: -nat).(\lambda (H: (lt n m)).(\lambda (H0: (lt p q)).(lt_le_plus_plus n m p q -H (lt_le_weak p q H0))))))). - -lemma well_founded_ltof: - \forall (A: Type[0]).(\forall (f: ((A \to nat))).(well_founded A (ltof A f))) -\def - \lambda (A: Type[0]).(\lambda (f: ((A \to nat))).(let H \def (\lambda (n: -nat).(nat_ind (\lambda (n0: nat).(\forall (a: A).((lt (f a) n0) \to (Acc A -(ltof A f) a)))) (\lambda (a: A).(\lambda (H: (lt (f a) O)).(False_ind (Acc A -(ltof A f) a) (let H0 \def H in ((let H1 \def (lt_n_O (f a)) in (\lambda (H2: -(lt (f a) O)).(H1 H2))) H0))))) (\lambda (n0: nat).(\lambda (IHn: ((\forall -(a: A).((lt (f a) n0) \to (Acc A (ltof A f) a))))).(\lambda (a: A).(\lambda -(ltSma: (lt (f a) (S n0))).(Acc_intro A (ltof A f) a (\lambda (b: A).(\lambda -(ltfafb: (lt (f b) (f a))).(IHn b (lt_le_trans (f b) (f a) n0 ltfafb -(lt_n_Sm_le (f a) n0 ltSma)))))))))) n)) in (\lambda (a: A).(H (S (f a)) a -(le_n (S (f a))))))). - -lemma lt_wf: - well_founded nat lt -\def - well_founded_ltof nat (\lambda (m: nat).m). - -lemma lt_wf_ind: - \forall (p: nat).(\forall (P: ((nat \to Prop))).(((\forall (n: -nat).(((\forall (m: nat).((lt m n) \to (P m)))) \to (P n)))) \to (P p))) -\def - \lambda (p: nat).(\lambda (P: ((nat \to Prop))).(\lambda (H: ((\forall (n: -nat).(((\forall (m: nat).((lt m n) \to (P m)))) \to (P n))))).(Acc_ind nat lt -(\lambda (n: nat).(P n)) (\lambda (x: nat).(\lambda (_: ((\forall (y: -nat).((lt y x) \to (Acc nat lt y))))).(\lambda (H1: ((\forall (y: nat).((lt y -x) \to (P y))))).(H x H1)))) p (lt_wf p)))). -