X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Flegacy_1%2Fcoq%2Fprops.ma;h=b5069fdf73511272af8581577af1cd7420ac0b2b;hb=57ae1762497a5f3ea75740e2908e04adb8642cc2;hp=4022de81674c0b2bf540c92f43409d909a8ae814;hpb=639e798161afea770f41d78673c0fe3be4125beb;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/legacy_1/coq/props.ma b/matita/matita/contribs/lambdadelta/legacy_1/coq/props.ma index 4022de816..b5069fdf7 100644 --- a/matita/matita/contribs/lambdadelta/legacy_1/coq/props.ma +++ b/matita/matita/contribs/lambdadelta/legacy_1/coq/props.ma @@ -16,7 +16,7 @@ include "legacy_1/coq/fwd.ma". -theorem f_equal: +lemma f_equal: \forall (A: Type[0]).(\forall (B: Type[0]).(\forall (f: ((A \to B))).(\forall (x: A).(\forall (y: A).((eq A x y) \to (eq B (f x) (f y))))))) \def @@ -24,7 +24,7 @@ B))).(\forall (x: A).(\forall (y: A).((eq A x y) \to (eq B (f x) (f y))))))) B))).(\lambda (x: A).(\lambda (y: A).(\lambda (H: (eq A x y)).(eq_ind A x (\lambda (a: A).(eq B (f x) (f a))) (refl_equal B (f x)) y H)))))). -theorem f_equal2: +lemma f_equal2: \forall (A1: Type[0]).(\forall (A2: Type[0]).(\forall (B: Type[0]).(\forall (f: ((A1 \to (A2 \to B)))).(\forall (x1: A1).(\forall (y1: A1).(\forall (x2: A2).(\forall (y2: A2).((eq A1 x1 y1) \to ((eq A2 x2 y2) \to (eq B (f x1 x2) @@ -37,7 +37,7 @@ A1).((eq A2 x2 y2) \to (eq B (f x1 x2) (f a y2)))) (\lambda (H0: (eq A2 x2 y2)).(eq_ind A2 x2 (\lambda (a: A2).(eq B (f x1 x2) (f x1 a))) (refl_equal B (f x1 x2)) y2 H0)) y1 H))))))))). -theorem f_equal3: +lemma f_equal3: \forall (A1: Type[0]).(\forall (A2: Type[0]).(\forall (A3: Type[0]).(\forall (B: Type[0]).(\forall (f: ((A1 \to (A2 \to (A3 \to B))))).(\forall (x1: A1).(\forall (y1: A1).(\forall (x2: A2).(\forall (y2: A2).(\forall (x3: @@ -54,14 +54,14 @@ A1).((eq A2 x2 y2) \to ((eq A3 x3 y3) \to (eq B (f x1 x2 x3) (f a y2 y3))))) x3 (\lambda (a: A3).(eq B (f x1 x2 x3) (f x1 x2 a))) (refl_equal B (f x1 x2 x3)) y3 H1)) y2 H0)) y1 H)))))))))))). -theorem sym_eq: +lemma sym_eq: \forall (A: Type[0]).(\forall (x: A).(\forall (y: A).((eq A x y) \to (eq A y x)))) \def \lambda (A: Type[0]).(\lambda (x: A).(\lambda (y: A).(\lambda (H: (eq A x y)).(eq_ind A x (\lambda (a: A).(eq A a x)) (refl_equal A x) y H)))). -theorem eq_ind_r: +lemma eq_ind_r: \forall (A: Type[0]).(\forall (x: A).(\forall (P: ((A \to Prop))).((P x) \to (\forall (y: A).((eq A y x) \to (P y)))))) \def @@ -69,7 +69,7 @@ theorem eq_ind_r: (H: (P x)).(\lambda (y: A).(\lambda (H0: (eq A y x)).(match (sym_eq A y x H0) with [refl_equal \Rightarrow H])))))). -theorem trans_eq: +lemma trans_eq: \forall (A: Type[0]).(\forall (x: A).(\forall (y: A).(\forall (z: A).((eq A x y) \to ((eq A y z) \to (eq A x z)))))) \def @@ -77,7 +77,7 @@ x y) \to ((eq A y z) \to (eq A x z)))))) A).(\lambda (H: (eq A x y)).(\lambda (H0: (eq A y z)).(eq_ind A y (\lambda (a: A).(eq A x a)) H z H0)))))). -theorem sym_not_eq: +lemma sym_not_eq: \forall (A: Type[0]).(\forall (x: A).(\forall (y: A).((not (eq A x y)) \to (not (eq A y x))))) \def @@ -85,7 +85,7 @@ theorem sym_not_eq: A x y))).(\lambda (h2: (eq A y x)).(h1 (eq_ind A y (\lambda (a: A).(eq A a y)) (refl_equal A y) x h2)))))). -theorem nat_double_ind: +lemma nat_double_ind: \forall (R: ((nat \to (nat \to Prop)))).(((\forall (n: nat).(R O n))) \to (((\forall (n: nat).(R (S n) O))) \to (((\forall (n: nat).(\forall (m: nat).((R n m) \to (R (S n) (S m)))))) \to (\forall (n: nat).(\forall (m: @@ -99,31 +99,31 @@ nat).(\lambda (H2: ((\forall (m: nat).(R n0 m)))).(\lambda (m: nat).(nat_ind (\lambda (n1: nat).(R (S n0) n1)) (H0 n0) (\lambda (n1: nat).(\lambda (_: (R (S n0) n1)).(H1 n0 n1 (H2 n1)))) m)))) n))))). -theorem eq_add_S: +lemma eq_add_S: \forall (n: nat).(\forall (m: nat).((eq nat (S n) (S m)) \to (eq nat n m))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (eq nat (S n) (S m))).(f_equal nat nat pred (S n) (S m) H))). -theorem O_S: +lemma O_S: \forall (n: nat).(not (eq nat O (S n))) \def \lambda (n: nat).(\lambda (H: (eq nat O (S n))).(eq_ind nat (S n) (\lambda (n0: nat).(IsSucc n0)) I O (sym_eq nat O (S n) H))). -theorem not_eq_S: +lemma not_eq_S: \forall (n: nat).(\forall (m: nat).((not (eq nat n m)) \to (not (eq nat (S n) (S m))))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (not (eq nat n m))).(\lambda (H0: (eq nat (S n) (S m))).(H (eq_add_S n m H0))))). -theorem pred_Sn: +lemma pred_Sn: \forall (m: nat).(eq nat m (pred (S m))) \def \lambda (m: nat).(refl_equal nat (pred (S m))). -theorem S_pred: +lemma S_pred: \forall (n: nat).(\forall (m: nat).((lt m n) \to (eq nat n (S (pred n))))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt m n)).(le_ind (S m) @@ -131,7 +131,7 @@ theorem S_pred: m)))) (\lambda (m0: nat).(\lambda (_: (le (S m) m0)).(\lambda (_: (eq nat m0 (S (pred m0)))).(refl_equal nat (S (pred (S m0))))))) n H))). -theorem le_trans: +lemma le_trans: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((le n m) \to ((le m p) \to (le n p))))) \def @@ -140,26 +140,26 @@ m)).(\lambda (H0: (le m p)).(le_ind m (\lambda (n0: nat).(le n n0)) H (\lambda (m0: nat).(\lambda (_: (le m m0)).(\lambda (IHle: (le n m0)).(le_S n m0 IHle)))) p H0))))). -theorem le_trans_S: +lemma le_trans_S: \forall (n: nat).(\forall (m: nat).((le (S n) m) \to (le n m))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le (S n) m)).(le_trans n (S n) m (le_S n n (le_n n)) H))). -theorem le_n_S: +lemma le_n_S: \forall (n: nat).(\forall (m: nat).((le n m) \to (le (S n) (S m)))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_ind n (\lambda (n0: nat).(le (S n) (S n0))) (le_n (S n)) (\lambda (m0: nat).(\lambda (_: (le n m0)).(\lambda (IHle: (le (S n) (S m0))).(le_S (S n) (S m0) IHle)))) m H))). -theorem le_O_n: +lemma le_O_n: \forall (n: nat).(le O n) \def \lambda (n: nat).(nat_ind (\lambda (n0: nat).(le O n0)) (le_n O) (\lambda (n0: nat).(\lambda (IHn: (le O n0)).(le_S O n0 IHn))) n). -theorem le_S_n: +lemma le_S_n: \forall (n: nat).(\forall (m: nat).((le (S n) (S m)) \to (le n m))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le (S n) (S m))).(le_ind (S @@ -167,21 +167,21 @@ n) (\lambda (n0: nat).(le (pred (S n)) (pred n0))) (le_n n) (\lambda (m0: nat).(\lambda (H0: (le (S n) m0)).(\lambda (_: (le n (pred m0))).(le_trans_S n m0 H0)))) (S m) H))). -theorem le_Sn_O: +lemma le_Sn_O: \forall (n: nat).(not (le (S n) O)) \def \lambda (n: nat).(\lambda (H: (le (S n) O)).(le_ind (S n) (\lambda (n0: nat).(IsSucc n0)) I (\lambda (m: nat).(\lambda (_: (le (S n) m)).(\lambda (_: (IsSucc m)).I))) O H)). -theorem le_Sn_n: +lemma le_Sn_n: \forall (n: nat).(not (le (S n) n)) \def \lambda (n: nat).(nat_ind (\lambda (n0: nat).(not (le (S n0) n0))) (le_Sn_O O) (\lambda (n0: nat).(\lambda (IHn: (not (le (S n0) n0))).(\lambda (H: (le (S (S n0)) (S n0))).(IHn (le_S_n (S n0) n0 H))))) n). -theorem le_antisym: +lemma le_antisym: \forall (n: nat).(\forall (m: nat).((le n m) \to ((le m n) \to (eq nat n m)))) \def @@ -192,12 +192,12 @@ nat n)) (\lambda (m0: nat).(\lambda (H: (le n m0)).(\lambda (_: (((le m0 n) m0)) (let H2 \def (le_trans (S m0) n m0 H1 H) in ((let H3 \def (le_Sn_n m0) in (\lambda (H4: (le (S m0) m0)).(H3 H4))) H2))))))) m h))). -theorem le_n_O_eq: +lemma le_n_O_eq: \forall (n: nat).((le n O) \to (eq nat O n)) \def \lambda (n: nat).(\lambda (H: (le n O)).(le_antisym O n (le_O_n n) H)). -theorem le_elim_rel: +lemma le_elim_rel: \forall (P: ((nat \to (nat \to Prop)))).(((\forall (p: nat).(P O p))) \to (((\forall (p: nat).(\forall (q: nat).((le p q) \to ((P p q) \to (P (S p) (S q))))))) \to (\forall (n: nat).(\forall (m: nat).((le n m) \to (P n m)))))) @@ -213,34 +213,34 @@ n0 (le_n n0))) (\lambda (m0: nat).(\lambda (H1: (le (S n0) m0)).(\lambda (_: (P (S n0) m0)).(H0 n0 m0 (le_trans_S n0 m0 H1) (IHn m0 (le_trans_S n0 m0 H1)))))) m Le))))) n)))). -theorem lt_n_n: +lemma lt_n_n: \forall (n: nat).(not (lt n n)) \def le_Sn_n. -theorem lt_n_S: +lemma lt_n_S: \forall (n: nat).(\forall (m: nat).((lt n m) \to (lt (S n) (S m)))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt n m)).(le_n_S (S n) m H))). -theorem lt_n_Sn: +lemma lt_n_Sn: \forall (n: nat).(lt n (S n)) \def \lambda (n: nat).(le_n (S n)). -theorem lt_S_n: +lemma lt_S_n: \forall (n: nat).(\forall (m: nat).((lt (S n) (S m)) \to (lt n m))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt (S n) (S m))).(le_S_n (S n) m H))). -theorem lt_n_O: +lemma lt_n_O: \forall (n: nat).(not (lt n O)) \def le_Sn_O. -theorem lt_trans: +lemma lt_trans: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt n m) \to ((lt m p) \to (lt n p))))) \def @@ -249,17 +249,17 @@ m)).(\lambda (H0: (lt m p)).(le_ind (S m) (\lambda (n0: nat).(lt n n0)) (le_S (S n) m H) (\lambda (m0: nat).(\lambda (_: (le (S m) m0)).(\lambda (IHle: (lt n m0)).(le_S (S n) m0 IHle)))) p H0))))). -theorem lt_O_Sn: +lemma lt_O_Sn: \forall (n: nat).(lt O (S n)) \def \lambda (n: nat).(le_n_S O n (le_O_n n)). -theorem lt_le_S: +lemma lt_le_S: \forall (n: nat).(\forall (p: nat).((lt n p) \to (le (S n) p))) \def \lambda (n: nat).(\lambda (p: nat).(\lambda (H: (lt n p)).H)). -theorem le_not_lt: +lemma le_not_lt: \forall (n: nat).(\forall (m: nat).((le n m) \to (not (lt m n)))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_ind n (\lambda @@ -267,12 +267,12 @@ theorem le_not_lt: m0)).(\lambda (IHle: (not (lt m0 n))).(\lambda (H1: (lt (S m0) n)).(IHle (le_trans_S (S m0) n H1)))))) m H))). -theorem le_lt_n_Sm: +lemma le_lt_n_Sm: \forall (n: nat).(\forall (m: nat).((le n m) \to (lt n (S m)))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_n_S n m H))). -theorem le_lt_trans: +lemma le_lt_trans: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((le n m) \to ((lt m p) \to (lt n p))))) \def @@ -281,7 +281,7 @@ m)).(\lambda (H0: (lt m p)).(le_ind (S m) (\lambda (n0: nat).(lt n n0)) (le_n_S n m H) (\lambda (m0: nat).(\lambda (_: (le (S m) m0)).(\lambda (IHle: (lt n m0)).(le_S (S n) m0 IHle)))) p H0))))). -theorem lt_le_trans: +lemma lt_le_trans: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt n m) \to ((le m p) \to (lt n p))))) \def @@ -290,19 +290,19 @@ m)).(\lambda (H0: (le m p)).(le_ind m (\lambda (n0: nat).(lt n n0)) H (\lambda (m0: nat).(\lambda (_: (le m m0)).(\lambda (IHle: (lt n m0)).(le_S (S n) m0 IHle)))) p H0))))). -theorem lt_le_weak: +lemma lt_le_weak: \forall (n: nat).(\forall (m: nat).((lt n m) \to (le n m))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt n m)).(le_trans_S n m H))). -theorem lt_n_Sm_le: +lemma lt_n_Sm_le: \forall (n: nat).(\forall (m: nat).((lt n (S m)) \to (le n m))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt n (S m))).(le_S_n n m H))). -theorem le_lt_or_eq: +lemma le_lt_or_eq: \forall (n: nat).(\forall (m: nat).((le n m) \to (or (lt n m) (eq nat n m)))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_ind n (\lambda @@ -311,7 +311,7 @@ theorem le_lt_or_eq: (or (lt n m0) (eq nat n m0))).(or_introl (lt n (S m0)) (eq nat n (S m0)) (le_n_S n m0 H0))))) m H))). -theorem le_or_lt: +lemma le_or_lt: \forall (n: nat).(\forall (m: nat).(or (le n m) (lt m n))) \def \lambda (n: nat).(\lambda (m: nat).(nat_double_ind (\lambda (n0: @@ -324,14 +324,14 @@ n0))) (\lambda (H0: (le n0 m0)).(or_introl (le (S n0) (S m0)) (lt (S m0) (S n0)) (le_n_S n0 m0 H0))) (\lambda (H0: (lt m0 n0)).(or_intror (le (S n0) (S m0)) (lt (S m0) (S n0)) (le_n_S (S m0) n0 H0))) H)))) n m)). -theorem plus_n_O: +lemma plus_n_O: \forall (n: nat).(eq nat n (plus n O)) \def \lambda (n: nat).(nat_ind (\lambda (n0: nat).(eq nat n0 (plus n0 O))) (refl_equal nat O) (\lambda (n0: nat).(\lambda (H: (eq nat n0 (plus n0 O))).(f_equal nat nat S n0 (plus n0 O) H))) n). -theorem plus_n_Sm: +lemma plus_n_Sm: \forall (n: nat).(\forall (m: nat).(eq nat (S (plus n m)) (plus n (S m)))) \def \lambda (m: nat).(\lambda (n: nat).(nat_ind (\lambda (n0: nat).(eq nat (S @@ -339,7 +339,7 @@ theorem plus_n_Sm: nat).(\lambda (H: (eq nat (S (plus n0 n)) (plus n0 (S n)))).(f_equal nat nat S (S (plus n0 n)) (plus n0 (S n)) H))) m)). -theorem plus_sym: +lemma plus_sym: \forall (n: nat).(\forall (m: nat).(eq nat (plus n m) (plus m n))) \def \lambda (n: nat).(\lambda (m: nat).(nat_ind (\lambda (n0: nat).(eq nat (plus @@ -348,7 +348,7 @@ y m) (plus m y))).(eq_ind nat (S (plus m y)) (\lambda (n0: nat).(eq nat (S (plus y m)) n0)) (f_equal nat nat S (plus y m) (plus m y) H) (plus m (S y)) (plus_n_Sm m y)))) n)). -theorem plus_Snm_nSm: +lemma plus_Snm_nSm: \forall (n: nat).(\forall (m: nat).(eq nat (plus (S n) m) (plus n (S m)))) \def \lambda (n: nat).(\lambda (m: nat).(eq_ind_r nat (plus m n) (\lambda (n0: @@ -356,7 +356,7 @@ nat).(eq nat (S n0) (plus n (S m)))) (eq_ind_r nat (plus (S m) n) (\lambda (n0: nat).(eq nat (S (plus m n)) n0)) (refl_equal nat (plus (S m) n)) (plus n (S m)) (plus_sym n (S m))) (plus n m) (plus_sym n m))). -theorem plus_assoc_l: +lemma plus_assoc_l: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(eq nat (plus n (plus m p)) (plus (plus n m) p)))) \def @@ -366,14 +366,14 @@ nat).(eq nat (plus n0 (plus m p)) (plus (plus n0 m) p))) (refl_equal nat (plus (plus n0 m) p))).(f_equal nat nat S (plus n0 (plus m p)) (plus (plus n0 m) p) H))) n))). -theorem plus_assoc_r: +lemma plus_assoc_r: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(eq nat (plus (plus n m) p) (plus n (plus m p))))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(sym_eq nat (plus n (plus m p)) (plus (plus n m) p) (plus_assoc_l n m p)))). -theorem simpl_plus_l: +lemma simpl_plus_l: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((eq nat (plus n m) (plus n p)) \to (eq nat m p)))) \def @@ -386,21 +386,21 @@ nat).(\lambda (H: (eq nat (S (plus n0 m)) (S (plus n0 p)))).(IHn m p (IHn (plus n0 m) (plus n0 p) (f_equal nat nat (plus n0) (plus n0 m) (plus n0 p) (eq_add_S (plus n0 m) (plus n0 p) H))))))))) n). -theorem minus_n_O: +lemma minus_n_O: \forall (n: nat).(eq nat n (minus n O)) \def \lambda (n: nat).(nat_ind (\lambda (n0: nat).(eq nat n0 (minus n0 O))) (refl_equal nat O) (\lambda (n0: nat).(\lambda (_: (eq nat n0 (minus n0 O))).(refl_equal nat (S n0)))) n). -theorem minus_n_n: +lemma minus_n_n: \forall (n: nat).(eq nat O (minus n n)) \def \lambda (n: nat).(nat_ind (\lambda (n0: nat).(eq nat O (minus n0 n0))) (refl_equal nat O) (\lambda (n0: nat).(\lambda (IHn: (eq nat O (minus n0 n0))).IHn)) n). -theorem minus_Sn_m: +lemma minus_Sn_m: \forall (n: nat).(\forall (m: nat).((le m n) \to (eq nat (S (minus n m)) (minus (S n) m)))) \def @@ -411,7 +411,7 @@ n0)))) (\lambda (p: nat).(f_equal nat nat S (minus p O) p (sym_eq nat p (le p q)).(\lambda (H0: (eq nat (S (minus q p)) (match p with [O \Rightarrow (S q) | (S l) \Rightarrow (minus q l)]))).H0)))) m n Le))). -theorem plus_minus: +lemma plus_minus: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((eq nat n (plus m p)) \to (eq nat p (minus n m))))) \def @@ -426,20 +426,20 @@ p)) in (\lambda (H2: (eq nat O (S (plus n0 p)))).(H1 H2))) H0))))) (\lambda nat p (minus m0 n0))))).(\lambda (H0: (eq nat (S m0) (S (plus n0 p)))).(H (eq_add_S m0 (plus n0 p) H0)))))) m n))). -theorem minus_plus: +lemma minus_plus: \forall (n: nat).(\forall (m: nat).(eq nat (minus (plus n m) n) m)) \def \lambda (n: nat).(\lambda (m: nat).(sym_eq nat m (minus (plus n m) n) (plus_minus (plus n m) n m (refl_equal nat (plus n m))))). -theorem le_pred_n: +lemma le_pred_n: \forall (n: nat).(le (pred n) n) \def \lambda (n: nat).(nat_ind (\lambda (n0: nat).(le (pred n0) n0)) (le_n O) (\lambda (n0: nat).(\lambda (_: (le (pred n0) n0)).(le_S (pred (S n0)) n0 (le_n n0)))) n). -theorem le_plus_l: +lemma le_plus_l: \forall (n: nat).(\forall (m: nat).(le n (plus n m))) \def \lambda (n: nat).(nat_ind (\lambda (n0: nat).(\forall (m: nat).(le n0 (plus @@ -447,14 +447,14 @@ n0 m)))) (\lambda (m: nat).(le_O_n m)) (\lambda (n0: nat).(\lambda (IHn: ((\forall (m: nat).(le n0 (plus n0 m))))).(\lambda (m: nat).(le_n_S n0 (plus n0 m) (IHn m))))) n). -theorem le_plus_r: +lemma le_plus_r: \forall (n: nat).(\forall (m: nat).(le m (plus n m))) \def \lambda (n: nat).(\lambda (m: nat).(nat_ind (\lambda (n0: nat).(le m (plus n0 m))) (le_n m) (\lambda (n0: nat).(\lambda (H: (le m (plus n0 m))).(le_S m (plus n0 m) H))) n)). -theorem simpl_le_plus_l: +lemma simpl_le_plus_l: \forall (p: nat).(\forall (n: nat).(\forall (m: nat).((le (plus p n) (plus p m)) \to (le n m)))) \def @@ -466,14 +466,14 @@ nat).(\lambda (IHp: ((\forall (n: nat).(\forall (m: nat).((le (plus p0 n) (H: (le (S (plus p0 n)) (S (plus p0 m)))).(IHp n m (le_S_n (plus p0 n) (plus p0 m) H))))))) p). -theorem le_plus_trans: +lemma le_plus_trans: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((le n m) \to (le n (plus m p))))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (le n m)).(le_trans n m (plus m p) H (le_plus_l m p))))). -theorem le_reg_l: +lemma le_reg_l: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((le n m) \to (le (plus p n) (plus p m))))) \def @@ -483,7 +483,7 @@ nat).((le n m) \to (le (plus n0 n) (plus n0 m)))) (\lambda (H: (le n m)).H) m))))).(\lambda (H: (le n m)).(le_n_S (plus p0 n) (plus p0 m) (IHp H))))) p))). -theorem le_plus_plus: +lemma le_plus_plus: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(\forall (q: nat).((le n m) \to ((le p q) \to (le (plus n p) (plus m q))))))) \def @@ -493,7 +493,7 @@ nat).(le (plus n p) (plus n0 q))) (le_reg_l p q n H0) (\lambda (m0: nat).(\lambda (_: (le n m0)).(\lambda (H2: (le (plus n p) (plus m0 q))).(le_S (plus n p) (plus m0 q) H2)))) m H)))))). -theorem le_plus_minus: +lemma le_plus_minus: \forall (n: nat).(\forall (m: nat).((le n m) \to (eq nat m (plus n (minus m n))))) \def @@ -503,14 +503,14 @@ n))))) (_: (le p q)).(\lambda (H0: (eq nat q (plus p (minus q p)))).(f_equal nat nat S q (plus p (minus q p)) H0))))) n m Le))). -theorem le_plus_minus_r: +lemma le_plus_minus_r: \forall (n: nat).(\forall (m: nat).((le n m) \to (eq nat (plus n (minus m n)) m))) \def \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(sym_eq nat m (plus n (minus m n)) (le_plus_minus n m H)))). -theorem simpl_lt_plus_l: +lemma simpl_lt_plus_l: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt (plus p n) (plus p m)) \to (lt n m)))) \def @@ -520,7 +520,7 @@ nat).((lt (plus n0 n) (plus n0 m)) \to (lt n m))) (\lambda (H: (lt n m)).H) m)))).(\lambda (H: (lt (S (plus p0 n)) (S (plus p0 m)))).(IHp (le_S_n (S (plus p0 n)) (plus p0 m) H))))) p))). -theorem lt_reg_l: +lemma lt_reg_l: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt n m) \to (lt (plus p n) (plus p m))))) \def @@ -530,7 +530,7 @@ nat).((lt n m) \to (lt (plus n0 n) (plus n0 m)))) (\lambda (H: (lt n m)).H) m))))).(\lambda (H: (lt n m)).(lt_n_S (plus p0 n) (plus p0 m) (IHp H))))) p))). -theorem lt_reg_r: +lemma lt_reg_r: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt n m) \to (lt (plus n p) (plus m p))))) \def @@ -541,7 +541,7 @@ nat).(lt (plus n0 n) (plus n0 m))) H (\lambda (n0: nat).(\lambda (_: (lt (plus n0 n) (plus n0 m))).(lt_reg_l n m (S n0) H))) p) (plus m p) (plus_sym m p)) (plus n p) (plus_sym n p))))). -theorem le_lt_plus_plus: +lemma le_lt_plus_plus: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(\forall (q: nat).((le n m) \to ((lt p q) \to (lt (plus n p) (plus m q))))))) \def @@ -550,7 +550,7 @@ nat).(\lambda (H: (le n m)).(\lambda (H0: (le (S p) q)).(eq_ind_r nat (plus n (S p)) (\lambda (n0: nat).(le n0 (plus m q))) (le_plus_plus n m (S p) q H H0) (plus (S n) p) (plus_Snm_nSm n p))))))). -theorem lt_le_plus_plus: +lemma lt_le_plus_plus: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(\forall (q: nat).((lt n m) \to ((le p q) \to (lt (plus n p) (plus m q))))))) \def @@ -558,7 +558,7 @@ n m) \to ((le p q) \to (lt (plus n p) (plus m q))))))) nat).(\lambda (H: (le (S n) m)).(\lambda (H0: (le p q)).(le_plus_plus (S n) m p q H H0)))))). -theorem lt_plus_plus: +lemma lt_plus_plus: \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(\forall (q: nat).((lt n m) \to ((lt p q) \to (lt (plus n p) (plus m q))))))) \def @@ -566,7 +566,7 @@ n m) \to ((lt p q) \to (lt (plus n p) (plus m q))))))) nat).(\lambda (H: (lt n m)).(\lambda (H0: (lt p q)).(lt_le_plus_plus n m p q H (lt_le_weak p q H0))))))). -theorem well_founded_ltof: +lemma well_founded_ltof: \forall (A: Type[0]).(\forall (f: ((A \to nat))).(well_founded A (ltof A f))) \def \lambda (A: Type[0]).(\lambda (f: ((A \to nat))).(let H \def (\lambda (n: @@ -580,12 +580,12 @@ nat).(nat_ind (\lambda (n0: nat).(\forall (a: A).((lt (f a) n0) \to (Acc A (lt_n_Sm_le (f a) n0 ltSma)))))))))) n)) in (\lambda (a: A).(H (S (f a)) a (le_n (S (f a))))))). -theorem lt_wf: +lemma lt_wf: well_founded nat lt \def well_founded_ltof nat (\lambda (m: nat).m). -theorem lt_wf_ind: +lemma lt_wf_ind: \forall (p: nat).(\forall (P: ((nat \to Prop))).(((\forall (n: nat).(((\forall (m: nat).((lt m n) \to (P m)))) \to (P n)))) \to (P p))) \def