X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Farithmetics%2Fbigops.ma;h=e51cd799aa11533605db577807b5165ffdd6aff5;hb=fd12cbee622c58bc45089d62c3e6f131c238beb5;hp=1bd7c1613f0bea792f5dd91f80a23d88476e833e;hpb=16a95f57b09ae92ea24ab2addd02c1d0be80f109;p=helm.git diff --git a/matita/matita/lib/arithmetics/bigops.ma b/matita/matita/lib/arithmetics/bigops.ma index 1bd7c1613..e51cd799a 100644 --- a/matita/matita/lib/arithmetics/bigops.ma +++ b/matita/matita/lib/arithmetics/bigops.ma @@ -9,1688 +9,417 @@ \ / V_______________________________________________________________ *) -include "arithmetics/nat.ma". +include "basics/types.ma". +include "arithmetics/div_and_mod.ma". -let rec bigop' (n:nat) (filter: nat → bool) (A:Type[0]) (f: nat → A) - (nil: A) (op: A → A → A) ≝ - match n with - [ O ⇒ nil - | S k ⇒ - match filter k with - [true ⇒ op (f k) (bigop' k filter A f nil op) - |false ⇒ bigop' k filter A f nil op] - ]. +definition sameF_upto: nat → ∀A.relation(nat→A) ≝ +λk.λA.λf,g.∀i. i < k → f i = g i. + +definition sameF_p: nat → (nat → bool) →∀A.relation(nat→A) ≝ +λk,p,A,f,g.∀i. i < k → p i = true → f i = g i. -record range (A:Type[0]): Type[0] ≝ - {h:nat→A; upto:nat; filter:nat→bool}. +lemma sameF_upto_le: ∀A,f,g,n,m. + n ≤m → sameF_upto m A f g → sameF_upto n A f g. +#A #f #g #n #m #lenm #samef #i #ltin @samef /2 by lt_to_le_to_lt/ +qed. -definition same_upto: nat → ∀A.relation (range A) ≝ -λk.λA.λI,J. - ∀i. i < k → - ((filter A I i) = (filter A J i) ∧ - ((filter A I i) = true → (h A I i) = (h A J i))). - -definition same: ∀A.relation (range A) ≝ -λA.λI,J. (upto A I = upto A J) ∧ same_upto (upto A I) A I J. +lemma sameF_p_le: ∀A,p,f,g,n,m. + n ≤m → sameF_p m p A f g → sameF_p n p A f g. +#A #p #f #g #n #m #lenm #samef #i #ltin #pi @samef /2 by lt_to_le_to_lt/ +qed. -definition pad: ∀A.nat→range A→range A ≝ - λA.λk.λI.mk_range A (h A I) k - (λi.if_then_else ? (leb (upto A I) i) false (filter A I i)). - -definition same1: ∀A.relation (range A) ≝ -λA.λI,J. - let maxIJ ≝ (max (upto A I) (upto A J)) in - same_upto maxIJ A (pad A maxIJ I) (pad A maxIJ J). +(* +definition sumF ≝ λA.λf,g:nat → A.λn,i. +if_then_else ? (leb n i) (g (i-n)) (f i). -(* -definition same: ∀A.relation (range A) ≝ -λA.λI,J. - ∀i. i < max (upto A I) (upto A J) → - ((filter A I i) = (filter A J i) ∧ - ((filter A I i) = true → (h A I i) = (h A J i))). *) - -definition bigop: ∀A,B:Type[0].(range A)→B→(B→B→B)→(A→B)→B ≝ - λA,B.λI.λnil.λop.λf. - bigop' (upto A I) (filter A I) B (λx.f(h A I x)) nil op. +lemma sumF_unfold: ∀A,f,g,n,i. +sumF A f g n i = if_then_else ? (leb n i) (g (i-n)) (f i). +// qed. *) -theorem same_bigop: ∀A,B.∀I,J:range A. ∀nil.∀op.∀f. - same A I J → bigop A B I nil op f = bigop A B J nil op f. -#A #B #I #J #nil #op #f * #equp normalize (not_le_to_leb_false …) // @lt_to_not_le // -|#n #leup #Hind normalize (le_to_leb_true … leup) normalize // -] qed. +(* bigop *) +let rec bigop (n:nat) (p:nat → bool) (B:Type[0]) + (nil: B) (op: B → B → B) (f: nat → B) ≝ + match n with + [ O ⇒ nil + | S k ⇒ + match p k with + [true ⇒ op (f k) (bigop k p B nil op f) + |false ⇒ bigop k p B nil op f] + ]. + +notation "\big [ op , nil ]_{ ident i < n | p } f" + with precedence 80 +for @{'bigop $n $op $nil (λ${ident i}. $p) (λ${ident i}. $f)}. -theorem iter_p_gen_false: \forall A:Type. \forall g: nat \to A. \forall baseA:A. -\forall plusA: A \to A \to A. \forall n. -iter_p_gen n (\lambda x.false) A g baseA plusA = baseA. -intros. -elim n -[ reflexivity -| simplify. - assumption -] -qed. +notation "\big [ op , nil ]_{ ident i < n } f" + with precedence 80 +for @{'bigop $n $op $nil (λ${ident i}.true) (λ${ident i}. $f)}. -theorem iter_p_gen_plusA: \forall A:Type. \forall n,k:nat.\forall p:nat \to bool. -\forall g: nat \to A. \forall baseA:A. \forall plusA: A \to A \to A. -(symmetric A plusA) \to (\forall a:A. (plusA a baseA) = a) \to (associative A plusA) -\to -iter_p_gen (k + n) p A g baseA plusA -= (plusA (iter_p_gen k (\lambda x.p (x+n)) A (\lambda x.g (x+n)) baseA plusA) - (iter_p_gen n p A g baseA plusA)). -intros. +interpretation "bigop" 'bigop n op nil p f = (bigop n p ? nil op f). -elim k -[ simplify. - rewrite > H in \vdash (? ? ? %). - rewrite > (H1 ?). - reflexivity -| apply (bool_elim ? (p (n1+n))) - [ intro. - rewrite > (true_to_iter_p_gen_Sn ? ? ? ? ? ? H4). - rewrite > (true_to_iter_p_gen_Sn n1 (\lambda x.p (x+n)) ? ? ? ? H4). - rewrite > (H2 (g (n1 + n)) ? ?). - rewrite < H3. - reflexivity - | intro. - rewrite > (false_to_iter_p_gen_Sn ? ? ? ? ? ? H4). - rewrite > (false_to_iter_p_gen_Sn n1 (\lambda x.p (x+n)) ? ? ? ? H4). - assumption - ] -] +notation "\big [ op , nil ]_{ ident j ∈ [a,b[ | p } f" + with precedence 80 +for @{'bigop ($b-$a) $op $nil (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a))) + (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. + +notation "\big [ op , nil ]_{ ident j ∈ [a,b[ } f" + with precedence 80 +for @{'bigop ($b-$a) $op $nil (λ${ident j}.((λ${ident j}.true) (${ident j}+$a))) + (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. + +(* notation "\big [ op , nil ]_{( term 55) a ≤ ident j < b | p } f" + with precedence 80 +for @{\big[$op,$nil]_{${ident j} < ($b-$a) | ((λ${ident j}.$p) (${ident j}+$a))}((λ${ident j}.$f)(${ident j}+$a))}. +*) + +interpretation "bigop" 'bigop n op nil p f = (bigop n p ? nil op f). + +lemma bigop_Strue: ∀k,p,B,nil,op.∀f:nat→B. p k = true → + \big[op,nil]_{i < S k | p i}(f i) = + op (f k) (\big[op,nil]_{i < k | p i}(f i)). +#k #p #B #nil #op #f #H normalize >H // qed. + +lemma bigop_Sfalse: ∀k,p,B,nil,op.∀f:nat→B. p k = false → + \big[op,nil]_{ i < S k | p i}(f i) = + \big[op,nil]_{i < k | p i}(f i). +#k #p #B #nil #op #f #H normalize >H // qed. + +lemma same_bigop : ∀k,p1,p2,B,nil,op.∀f,g:nat→B. + sameF_upto k bool p1 p2 → sameF_p k p1 B f g → + \big[op,nil]_{i < k | p1 i}(f i) = + \big[op,nil]_{i < k | p2 i}(g i). +#k #p1 #p2 #B #nil #op #f #g (elim k) // +#n #Hind #samep #samef normalize >Hind /2/ +<(samep … (le_n …)) cases(true_or_false (p1 n)) #H1 >H1 +normalize // <(samef … (le_n …) H1) // qed. -theorem false_to_eq_iter_p_gen: \forall A:Type. \forall n,m:nat.\forall p:nat \to bool. -\forall g: nat \to A. \forall baseA:A. \forall plusA: A \to A \to A. -n \le m \to (\forall i:nat. n \le i \to i < m \to p i = false) -\to iter_p_gen m p A g baseA plusA = iter_p_gen n p A g baseA plusA. -intros 8. -elim H -[ reflexivity -| simplify. - rewrite > H3 - [ simplify. - apply H2. - intros. - apply H3 - [ apply H4 - | apply le_S. - assumption - ] - | assumption - |apply le_n - ] -] +theorem pad_bigop: ∀k,n,p,B,nil,op.∀f:nat→B. n ≤ k → +\big[op,nil]_{i < n | p i}(f i) + = \big[op,nil]_{i < k | if leb n i then false else p i}(f i). +#k #n #p #B #nil #op #f #lenk (elim lenk) + [@same_bigop #i #lti // >(not_le_to_leb_false …) /2/ + |#j #leup #Hind >bigop_Sfalse >(le_to_leb_true … leup) // + ] qed. + +theorem pad_bigop1: ∀k,n,p,B,nil,op.∀f:nat→B. n ≤ k → + (∀i. n ≤ i → i < k → p i = false) → + \big[op,nil]_{i < n | p i}(f i) + = \big[op,nil]_{i < k | p i}(f i). +#k #n #p #B #nil #op #f #lenk (elim lenk) + [#_ @same_bigop #i #lti // + |#j #leup #Hind #Hfalse >bigop_Sfalse + [@Hind #i #leni #ltij @Hfalse // @le_S // + |@Hfalse // + ] + ] qed. - -(* a therem slightly more general than the previous one *) -theorem or_false_eq_baseA_to_eq_iter_p_gen: \forall A:Type. \forall n,m:nat.\forall p:nat \to bool. -\forall g: nat \to A. \forall baseA:A. \forall plusA: A \to A \to A. -(\forall a. plusA baseA a = a) \to -n \le m \to (\forall i:nat. n \le i \to i < m \to p i = false \lor g i = baseA) -\to iter_p_gen m p A g baseA plusA = iter_p_gen n p A g baseA plusA. -intros 9. -elim H1 -[reflexivity -|apply (bool_elim ? (p n1));intro - [elim (H4 n1) - [apply False_ind. - apply not_eq_true_false. - rewrite < H5. - rewrite < H6. - reflexivity - |rewrite > true_to_iter_p_gen_Sn - [rewrite > H6. - rewrite > H. - apply H3.intros. - apply H4 - [assumption - |apply le_S.assumption - ] - |assumption - ] - |assumption - |apply le_n - ] - |rewrite > false_to_iter_p_gen_Sn - [apply H3.intros. - apply H4 - [assumption - |apply le_S.assumption - ] - |assumption - ] - ] -] + +theorem bigop_false: ∀n,B,nil,op.∀f:nat→B. + \big[op,nil]_{i < n | false }(f i) = nil. +#n #B #nil #op #f elim n // #n1 #Hind +>bigop_Sfalse // qed. - -theorem iter_p_gen2 : -\forall n,m:nat. -\forall p1,p2:nat \to bool. -\forall A:Type. -\forall g: nat \to nat \to A. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) -\to -iter_p_gen (n*m) - (\lambda x.andb (p1 (div x m)) (p2 (mod x m))) - A - (\lambda x.g (div x m) (mod x m)) - baseA - plusA = -iter_p_gen n p1 A - (\lambda x.iter_p_gen m p2 A (g x) baseA plusA) - baseA plusA. -intros. -elim n -[ simplify. - reflexivity -| apply (bool_elim ? (p1 n1)) - [ intro. - rewrite > (true_to_iter_p_gen_Sn ? ? ? ? ? ? H4). - simplify in \vdash (? ? (? % ? ? ? ? ?) ?). - rewrite > iter_p_gen_plusA - [ rewrite < H3. - apply eq_f2 - [ apply eq_iter_p_gen - [ intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H5). - rewrite > (mod_plus_times ? ? ? H5). - rewrite > H4. - simplify. - reflexivity - | intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H5). - rewrite > (mod_plus_times ? ? ? H5). - reflexivity. - ] - | reflexivity - ] - | assumption - | assumption - | assumption - ] - | intro. - rewrite > (false_to_iter_p_gen_Sn ? ? ? ? ? ? H4). - simplify in \vdash (? ? (? % ? ? ? ? ?) ?). - rewrite > iter_p_gen_plusA - [ rewrite > H3. - apply (trans_eq ? ? (plusA baseA - (iter_p_gen n1 p1 A (\lambda x:nat.iter_p_gen m p2 A (g x) baseA plusA) baseA plusA ))) - [ apply eq_f2 - [ rewrite > (eq_iter_p_gen ? (\lambda x.false) A ? (\lambda x:nat.g ((x+n1*m)/m) ((x+n1*m)\mod m))) - [ apply iter_p_gen_false - | intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H5). - rewrite > (mod_plus_times ? ? ? H5). - rewrite > H4. - simplify.reflexivity - | intros.reflexivity. - ] - | reflexivity - ] - | rewrite < H. - rewrite > H2. - reflexivity. - ] - | assumption - | assumption - | assumption - ] + +record Aop (A:Type[0]) (nil:A) : Type[0] ≝ + {op :2> A → A → A; + nill:∀a. op nil a = a; + nilr:∀a. op a nil = a; + assoc: ∀a,b,c.op a (op b c) = op (op a b) c + }. + +theorem pad_bigop_nil: ∀k,n,p,B,nil.∀op:Aop B nil.∀f:nat→B. n ≤ k → + (∀i. n ≤ i → i < k → p i = false ∨ f i = nil) → + \big[op,nil]_{i < n | p i}(f i) + = \big[op,nil]_{i < k | p i}(f i). +#k #n #p #B #nil #op #f #lenk (elim lenk) + [#_ @same_bigop #i #lti // + |#j #leup #Hind #Hfalse cases (true_or_false (p j)) #Hpj + [>bigop_Strue // + cut (f j = nil) + [cases (Hfalse j leup (le_n … )) // >Hpj #H destruct (H)] #Hfj + >Hfj >nill @Hind #i #leni #ltij + cases (Hfalse i leni (le_S … ltij)) /2/ + |>bigop_Sfalse // @Hind #i #leni #ltij + cases (Hfalse i leni (le_S … ltij)) /2/ + ] ] -] qed. -theorem iter_p_gen2': -\forall n,m:nat. -\forall p1: nat \to bool. -\forall p2: nat \to nat \to bool. -\forall A:Type. -\forall g: nat \to nat \to A. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) -\to -iter_p_gen (n*m) - (\lambda x.andb (p1 (div x m)) (p2 (div x m)(mod x m))) - A - (\lambda x.g (div x m) (mod x m)) - baseA - plusA = -iter_p_gen n p1 A - (\lambda x.iter_p_gen m (p2 x) A (g x) baseA plusA) - baseA plusA. -intros. -elim n -[ simplify. - reflexivity -| apply (bool_elim ? (p1 n1)) - [ intro. - rewrite > (true_to_iter_p_gen_Sn ? ? ? ? ? ? H4). - simplify in \vdash (? ? (? % ? ? ? ? ?) ?). - rewrite > iter_p_gen_plusA - [ rewrite < H3. - apply eq_f2 - [ apply eq_iter_p_gen - [ intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H5). - rewrite > (mod_plus_times ? ? ? H5). - rewrite > H4. - simplify. - reflexivity - | intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H5). - rewrite > (mod_plus_times ? ? ? H5). - reflexivity. - ] - | reflexivity - ] - | assumption - | assumption - | assumption - ] - | intro. - rewrite > (false_to_iter_p_gen_Sn ? ? ? ? ? ? H4). - simplify in \vdash (? ? (? % ? ? ? ? ?) ?). - rewrite > iter_p_gen_plusA - [ rewrite > H3. - apply (trans_eq ? ? (plusA baseA - (iter_p_gen n1 p1 A (\lambda x:nat.iter_p_gen m (p2 x) A (g x) baseA plusA) baseA plusA ))) - [ apply eq_f2 - [ rewrite > (eq_iter_p_gen ? (\lambda x.false) A ? (\lambda x:nat.g ((x+n1*m)/m) ((x+n1*m)\mod m))) - [ apply iter_p_gen_false - | intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H5). - rewrite > (mod_plus_times ? ? ? H5). - rewrite > H4. - simplify.reflexivity - | intros.reflexivity. - ] - | reflexivity - ] - | rewrite < H. - rewrite > H2. - reflexivity. - ] - | assumption - | assumption - | assumption - ] +theorem bigop_sum: ∀k1,k2,p1,p2,B.∀nil.∀op:Aop B nil.∀f,g:nat→B. +op (\big[op,nil]_{inill @same_bigop #i #lti + >(lt_to_leb_false … lti) normalize /2/ + |#i #Hind normalize (le_to_leb_true … (le_plus_n …)) normalize true_to_iter_p_gen_Sn - [ rewrite > true_to_iter_p_gen_Sn - [ rewrite < (H2 (g i) ? ?). - rewrite > (H1 (g i) (g n1)). - rewrite > (H2 (g n1) ? ?). - apply eq_f2 - [ reflexivity - | apply H - [ assumption - | assumption - | assumption - | assumption - | assumption - ] - ] - | rewrite > H6.simplify. - change with (notb (eqb n1 i) = notb false). - apply eq_f. - apply not_eq_to_eqb_false. - unfold Not.intro. - apply (lt_to_not_eq ? ? H7). - apply sym_eq.assumption - ] - | assumption - ] - | rewrite > true_to_iter_p_gen_Sn - [ rewrite > H7. - apply eq_f2 - [ reflexivity - | rewrite > false_to_iter_p_gen_Sn - [ apply eq_iter_p_gen - [ intros. - elim (p x) - [ simplify. - change with (notb false = notb (eqb x n1)). - apply eq_f. - apply sym_eq. - apply not_eq_to_eqb_false. - apply (lt_to_not_eq ? ? H8) - | reflexivity - ] - | intros. - reflexivity - ] - | rewrite > H6. - rewrite > (eq_to_eqb_true ? ? (refl_eq ? n1)). - reflexivity - ] - ] - | assumption - ] - | apply le_S_S_to_le. - assumption - ] - | rewrite > false_to_iter_p_gen_Sn - [ elim (le_to_or_lt_eq i n1) - [ rewrite > false_to_iter_p_gen_Sn - [ apply H - [ assumption - | assumption - | assumption - | assumption - | assumption - ] - | rewrite > H6.reflexivity - ] - | apply False_ind. - apply not_eq_true_false. - rewrite < H5. - rewrite > H7. - assumption - | apply le_S_S_to_le. - assumption - ] - | assumption - ] - ] -] +lemma plus_minus1: ∀a,b,c. c ≤ b → a + (b -c) = a + b -c. +#a #b #c #lecb @sym_eq @plus_to_minus >(commutative_plus c) +>associative_plus false_to_iter_p_gen_Sn - [ apply H9. - intros. - apply H10 - [ apply le_S. - apply H12 - | assumption - ] - | assumption - ] - ] - ] -| apply (bool_elim ? (p1 n1));intro - [ rewrite > true_to_iter_p_gen_Sn - [ rewrite > (iter_p_gen_gi A g baseA plusA n2 (h n1)) - [ apply eq_f2 - [ reflexivity - | apply H3 - [ intros. - rewrite > H4 - [ simplify. - change with ((\not eqb (h i) (h n1))= \not false). - apply eq_f. - apply not_eq_to_eqb_false. - unfold Not. - intro. - apply (lt_to_not_eq ? ? H11). - rewrite < H5 - [ rewrite < (H5 n1) - [ apply eq_f. - assumption - | apply le_n - | assumption - ] - | apply le_S. - assumption - | assumption - ] - | apply le_S.assumption - | assumption - ] - | intros. - apply H5 - [ apply le_S. - assumption - | assumption - ] - | intros. - apply H6 - [ apply le_S.assumption - | assumption - ] - | intros. - apply H7 - [ assumption - | generalize in match H12. - elim (p2 j) - [ reflexivity - | assumption - ] - ] - | intros. - apply H8 - [ assumption - | generalize in match H12. - elim (p2 j) - [ reflexivity - | assumption - ] - ] - | intros. - elim (le_to_or_lt_eq (h1 j) n1) - [ assumption - | generalize in match H12. - elim (p2 j) - [ simplify in H13. - absurd (j = (h n1)) - [ rewrite < H13. - rewrite > H8 - [ reflexivity - | assumption - | apply andb_true_true; [2: apply H12] - ] - | apply eqb_false_to_not_eq. - generalize in match H14. - elim (eqb j (h n1)) - [ apply sym_eq.assumption - | reflexivity - ] - ] - | simplify in H14. - apply False_ind. - apply not_eq_true_false. - apply sym_eq.assumption - ] - | apply le_S_S_to_le. - apply H9 - [ assumption - | generalize in match H12. - elim (p2 j) - [ reflexivity - | assumption - ] - ] - ] - ] - ] - | assumption - | assumption - | assumption - | apply H6 - [ apply le_n - | assumption - ] - | apply H4 - [ apply le_n - | assumption - ] - ] - | assumption - ] - | rewrite > false_to_iter_p_gen_Sn - [ apply H3 - [ intros. - apply H4[apply le_S.assumption|assumption] - | intros. - apply H5[apply le_S.assumption|assumption] - | intros. - apply H6[apply le_S.assumption|assumption] - | intros. - apply H7[assumption|assumption] - | intros. - apply H8[assumption|assumption] - | intros. - elim (le_to_or_lt_eq (h1 j) n1) - [ assumption - | absurd (j = (h n1)) - [ rewrite < H13. - rewrite > H8 - [ reflexivity - | assumption - | assumption - ] - | unfold Not.intro. - apply not_eq_true_false. - rewrite < H10. - rewrite < H13. - rewrite > H7 - [ reflexivity - | assumption - | assumption - ] - ] - | apply le_S_S_to_le. - apply H9 - [ assumption - | assumption - ] - ] - ] - | assumption - ] - ] -] +theorem bigop_I: ∀n,p,B.∀nil.∀op:Aop B nil.∀f:nat→B. +\big[op,nil]_{i∈[0,n[ |p i}(f i) = \big[op,nil]_{i < n|p i}(f i). +#n #p #B #nil #op #f true_to_iter_p_gen_Sn - [simplify.apply H1 - |assumption - ] - |apply (bool_elim ? (p n1));intro - [rewrite > true_to_iter_p_gen_Sn - [rewrite > true_to_iter_p_gen_Sn in ⊢ (? ? ? %) - [rewrite > H2 in ⊢ (? ? ? %). - apply eq_f.assumption - |assumption - ] - |assumption - ] - |rewrite > false_to_iter_p_gen_Sn - [rewrite > false_to_iter_p_gen_Sn in ⊢ (? ? ? %);assumption - |assumption + +theorem bigop_I_gen: ∀a,b,p,B.∀nil.∀op:Aop B nil.∀f:nat→B. a ≤b → +\big[op,nil]_{i∈[a,b[ |p i}(f i) = \big[op,nil]_{i < b|leb a i ∧ p i}(f i). +#a #b elim b // -b #b #Hind #p #B #nil #op #f #lea +cut (∀a,b. a ≤ b → S b - a = S (b -a)) + [#a #b cases a // #a1 #lta1 normalize >eq_minus_S_pred >S_pred + /2 by lt_plus_to_minus_r/] #Hcut +cases (le_to_or_lt_eq … lea) #Ha + [cases (true_or_false (p b)) #Hcase + [>bigop_Strue [2: >Hcase >(le_to_leb_true a b) // @le_S_S_to_le @Ha] + >(Hcut … (le_S_S_to_le … Ha)) + >bigop_Strue + [@eq_f2 + [@eq_f bigop_Sfalse [2: >Hcase cases (leb a b)//] + >(Hcut … (le_S_S_to_le … Ha)) >bigop_Sfalse + [@Hind @le_S_S_to_le // | (not_le_to_leb_false a i) // @lt_to_not_le // ] +qed. + +theorem bigop_sumI: ∀a,b,c,p,B.∀nil.∀op:Aop B nil.∀f:nat→B. +a ≤ b → b ≤ c → +\big[op,nil]_{i∈[a,c[ |p i}(f i) = + op (\big[op,nil]_{i ∈ [b,c[ |p i}(f i)) + \big[op,nil]_{i ∈ [a,b[ |p i}(f i). +#a #b # c #p #B #nil #op #f #leab #lebc +>(plus_minus_m_m (c-a) (b-a)) in ⊢ (??%?); /2/ +>minus_plus >(commutative_plus a) bigop_sum (cut (∀i. b -a ≤ i → i+a = i-(b-a)+b)) + [#i #lei >plus_minus // (bigop_sumI a (S a) (S b)) [|@le_S_S //|//] @eq_f2 + [@same_bigop // | eq_p_ord_times. -apply div_plus_times. -assumption. -qed. - -theorem mod_p_ord_times: -\forall p,m,x. ord x p < m \to p_ord_times p m x \mod m = ord x p. -intros.rewrite > eq_p_ord_times. -apply mod_plus_times. -assumption. +theorem bigop_0: ∀n,B.∀nil.∀op:Aop B nil.∀f:nat→B. +\big[op,nil]_{i < S n}(f i) = + op (\big[op,nil]_{i < n}(f (S i))) (f 0). +#n #B #nil #op #f +bigop_a [|//] @eq_f2 [|//] bigop_Strue // >Hind >bigop_sum @same_bigop + #i #lti @leb_elim // #lei cut (i = n*k2+(i-n*k2)) /2 by plus_minus/ + #eqi [|#H] >eqi in ⊢ (???%); + >div_plus_times /2 by monotonic_lt_minus_l/ + >Hp1 >(mod_plus_times …) /2 by refl, monotonic_lt_minus_l, eq_f/ + |>bigop_Sfalse // >Hind >(pad_bigop (S n*k2)) // @same_bigop + #i #lti @leb_elim // #lei cut (i = n*k2+(i-n*k2)) /2 by plus_minus/ + #eqi >eqi in ⊢ (???%); >div_plus_times /2 by refl, monotonic_lt_minus_l, trans_eq/ + ] qed. -lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m. -intros. -elim (le_to_or_lt_eq O ? (le_O_n m)) - [assumption - |apply False_ind. - rewrite < H1 in H. - rewrite < times_n_O in H. - apply (not_le_Sn_O ? H) +record ACop (A:Type[0]) (nil:A) : Type[0] ≝ + {aop :> Aop A nil; + comm: ∀a,b.aop a b = aop b a + }. + +lemma bigop_op: ∀k,p,B.∀nil.∀op:ACop B nil.∀f,g: nat → B. +op (\big[op,nil]_{ibigop_Strue // >bigop_Strue // >bigop_Strue // + normalize assoc >comm in ⊢ (??(????%?)?); + bigop_Sfalse // >bigop_Sfalse // >bigop_Sfalse // ] qed. -theorem iter_p_gen_knm: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to A. -\forall h2:nat \to nat \to nat. -\forall h11,h12:nat \to nat. -\forall k,n,m. -\forall p1,p21:nat \to bool. -\forall p22:nat \to nat \to bool. -(\forall x. x < k \to p1 x = true \to -p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true -\land h2 (h11 x) (h12 x) = x -\land (h11 x) < n \land (h12 x) < m) \to -(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to -p1 (h2 i j) = true \land -h11 (h2 i j) = i \land h12 (h2 i j) = j -\land h2 i j < k) \to -iter_p_gen k p1 A g baseA plusA = -iter_p_gen n p21 A (\lambda x:nat.iter_p_gen m (p22 x) A (\lambda y. g (h2 x y)) baseA plusA) baseA plusA. -intros. -rewrite < (iter_p_gen2' n m p21 p22 ? ? ? ? H H1 H2). -apply sym_eq. -apply (eq_iter_p_gen_gh A baseA plusA H H1 H2 g ? (\lambda x.(h11 x)*m+(h12 x))) - [intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - assumption - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - rewrite > H10. - rewrite > H9. - apply sym_eq. - apply div_mod. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - assumption - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - rewrite > div_plus_times - [rewrite > mod_plus_times - [rewrite > H9. - rewrite > H12. - reflexivity. - |assumption - ] - |assumption - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - rewrite > div_plus_times - [rewrite > mod_plus_times - [assumption - |assumption +lemma bigop_diff: ∀p,B.∀nil.∀op:ACop B nil.∀f:nat → B.∀i,n. + i < n → p i = true → + \big[op,nil]_{x(not_eq_to_eqb_false … (lt_to_not_eq … Hi)) //] #Hcut + cases (true_or_false (p n)) #pn + [>bigop_Strue // >bigop_Strue // + normalize >assoc >(comm ?? op (f i) (f n)) Hind // + |>bigop_Sfalse // >bigop_Sfalse // >Hind // + ] + |bigop_Strue // @eq_f >bigop_Sfalse + [@same_bigop // #k #ltki >not_eq_to_eqb_false /2/ + |>eq_to_eqb_true // + ] ] - |assumption - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - apply (lt_to_le_to_lt ? ((h11 j)*m+m)) - [apply monotonic_lt_plus_r. - assumption - |rewrite > sym_plus. - change with ((S (h11 j)*m) \le n*m). - apply monotonic_le_times_l. - assumption ] - ] qed. -theorem iter_p_gen_divides: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -\forall n,m,p:nat.O < n \to prime p \to Not (divides p n) \to -\forall g: nat \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) - -\to - -iter_p_gen (S (n*(exp p m))) (\lambda x.divides_b x (n*(exp p m))) A g baseA plusA = -iter_p_gen (S n) (\lambda x.divides_b x n) A - (\lambda x.iter_p_gen (S m) (\lambda y.true) A (\lambda y.g (x*(exp p y))) baseA plusA) baseA plusA. -intros. -cut (O < p) - [rewrite < (iter_p_gen2 ? ? ? ? ? ? ? ? H3 H4 H5). - apply (trans_eq ? ? - (iter_p_gen (S n*S m) (\lambda x:nat.divides_b (x/S m) n) A - (\lambda x:nat.g (x/S m*(p)\sup(x\mod S m))) baseA plusA) ) - [apply sym_eq. - apply (eq_iter_p_gen_gh ? ? ? ? ? ? g ? (p_ord_times p (S m))) - [ assumption - | assumption - | assumption - |intros. - lapply (divides_b_true_to_lt_O ? ? H H7). - apply divides_to_divides_b_true - [rewrite > (times_n_O O). - apply lt_times - [assumption - |apply lt_O_exp.assumption - ] - |apply divides_times - [apply divides_b_true_to_divides.assumption - |apply (witness ? ? (p \sup (m-i \mod (S m)))). - rewrite < exp_plus_times. - apply eq_f. - rewrite > sym_plus. - apply plus_minus_m_m. - autobatch by le_S_S_to_le, lt_mod_m_m, lt_O_S; - ] - ] - |intros. - lapply (divides_b_true_to_lt_O ? ? H H7). - unfold p_ord_times. - rewrite > (p_ord_exp1 p ? (i \mod (S m)) (i/S m)) - [change with ((i/S m)*S m+i \mod S m=i). - apply sym_eq. - apply div_mod. - apply lt_O_S - |assumption - |unfold Not.intro. - apply H2. - apply (trans_divides ? (i/ S m)) - [assumption| - apply divides_b_true_to_divides;assumption] - |apply sym_times. - ] - |intros. - apply le_S_S. - apply le_times - [apply le_S_S_to_le. - change with ((i/S m) < S n). - apply (lt_times_to_lt_l m). - apply (le_to_lt_to_lt ? i);[2:assumption] - autobatch by eq_plus_to_le, div_mod, lt_O_S. - |apply le_exp - [assumption - |apply le_S_S_to_le. - apply lt_mod_m_m. - apply lt_O_S - ] - ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_times - [apply divides_to_divides_b_true - [apply lt_O_ord_rem - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |cut (n = ord_rem (n*(exp p m)) p) - [rewrite > Hcut2. - apply divides_to_divides_ord_rem - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord_rem. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |assumption - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_times - [rewrite > mod_p_ord_times - [rewrite > sym_times. - apply sym_eq. - apply exp_ord - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut2. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |assumption - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |intros. - rewrite > eq_p_ord_times. - rewrite > sym_plus. - apply (lt_to_le_to_lt ? (S m +ord_rem j p*S m)) - [apply lt_plus_l. - apply le_S_S. - cut (m = ord (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |reflexivity - ] - ] - |change with (S (ord_rem j p)*S m \le S n*S m). - apply le_times_l. - apply le_S_S. - cut (n = ord_rem (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le - [apply lt_O_ord_rem - [elim H1.assumption - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |apply divides_to_divides_ord_rem - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - ] - |unfold ord_rem. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |reflexivity - ] - ] - ] - ] - |apply eq_iter_p_gen +(* range *) +record range (A:Type[0]): Type[0] ≝ + {enum:nat→A; upto:nat; filter:nat→bool}. - [intros. - elim (divides_b (x/S m) n);reflexivity - |intros.reflexivity - ] - ] -|elim H1.apply lt_to_le.assumption -] +definition sub_hk: (nat→nat)→(nat→nat)→∀A:Type[0].relation (range A) ≝ +λh,k,A,I,J.∀i.i<(upto A I) → (filter A I i)=true → + (h i < upto A J + ∧ filter A J (h i) = true + ∧ k (h i) = i). + +definition iso: ∀A:Type[0].relation (range A) ≝ + λA,I,J.∃h,k. + (∀i. i < (upto A I) → (filter A I i) = true → + enum A I i = enum A J (h i)) ∧ + sub_hk h k A I J ∧ sub_hk k h A J I. + +lemma sub_hkO: ∀h,k,A,I,J. upto A I = 0 → sub_hk h k A I J. +#h #k #A #I #J #up0 #i #lti >up0 @False_ind /2/ qed. - -(*distributive property for iter_p_gen*) -theorem distributive_times_plus_iter_p_gen: \forall A:Type. -\forall plusA: A \to A \to A. \forall basePlusA: A. -\forall timesA: A \to A \to A. -\forall n:nat. \forall k:A. \forall p:nat \to bool. \forall g:nat \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a basePlusA) = a) \to -(symmetric A timesA) \to (distributive A timesA plusA) \to -(\forall a:A. (timesA a basePlusA) = basePlusA) - - \to -((timesA k (iter_p_gen n p A g basePlusA plusA)) = - (iter_p_gen n p A (\lambda i:nat.(timesA k (g i))) basePlusA plusA)). -intros. -elim n -[ simplify. - apply H5 -| cut( (p n1) = true \lor (p n1) = false) - [ elim Hcut - [ rewrite > (true_to_iter_p_gen_Sn ? ? ? ? ? ? H7). - rewrite > (true_to_iter_p_gen_Sn ? ? ? ? ? ? H7) in \vdash (? ? ? %). - rewrite > (H4). - rewrite > (H3 k (g n1)). - apply eq_f. - assumption - | rewrite > (false_to_iter_p_gen_Sn ? ? ? ? ? ? H7). - rewrite > (false_to_iter_p_gen_Sn ? ? ? ? ? ? H7) in \vdash (? ? ? %). - assumption - ] - | elim ((p n1)) - [ left. - reflexivity - | right. - reflexivity - ] - ] -] +lemma sub0_to_false: ∀h,k,A,I,J. upto A I = 0 → sub_hk h k A J I → + ∀i. i < upto A J → filter A J i = false. +#h #k #A #I #J #up0 #sub #i #lti cases(true_or_false (filter A J i)) // +#ptrue (cases (sub i lti ptrue)) * #hi @False_ind /2/ qed. -(* old version - proved without theorem iter_p_gen_knm -theorem iter_p_gen_2_eq: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to nat \to A. -\forall h11,h12,h21,h22: nat \to nat \to nat. -\forall n1,m1,n2,m2. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to -p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true -\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j -\land h11 i j < n1 \land h12 i j < m1) \to -(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to -p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true -\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j -\land (h21 i j) < n2 \land (h22 i j) < m2) \to -iter_p_gen n1 p11 A - (\lambda x:nat .iter_p_gen m1 (p12 x) A (\lambda y. g x y) baseA plusA) - baseA plusA = -iter_p_gen n2 p21 A - (\lambda x:nat .iter_p_gen m2 (p22 x) A (\lambda y. g (h11 x y) (h12 x y)) baseA plusA ) - baseA plusA. -intros. -rewrite < (iter_p_gen2' ? ? ? ? ? ? ? ? H H1 H2). -rewrite < (iter_p_gen2' ? ? ? ? ? ? ? ? H H1 H2). -apply sym_eq. -letin h := (\lambda x.(h11 (x/m2) (x\mod m2))*m1 + (h12 (x/m2) (x\mod m2))). -letin h1 := (\lambda x.(h21 (x/m1) (x\mod m1))*m2 + (h22 (x/m1) (x\mod m1))). -apply (trans_eq ? ? - (iter_p_gen (n2*m2) (\lambda x:nat.p21 (x/m2)\land p22 (x/m2) (x\mod m2)) A - (\lambda x:nat.g ((h x)/m1) ((h x)\mod m1)) baseA plusA )) - [clear h.clear h1. - apply eq_iter_p_gen1 - [intros.reflexivity - |intros. - cut (O < m2) - [cut (x/m2 < n2) - [cut (x \mod m2 < m2) - [elim (and_true ? ? H6). - elim (H3 ? ? Hcut1 Hcut2 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - apply eq_f2 - [apply sym_eq. - apply div_plus_times. - assumption - | apply sym_eq. - apply mod_plus_times. - assumption - ] - |apply lt_mod_m_m. - assumption - ] - |apply (lt_times_n_to_lt m2) - [assumption - |apply (le_to_lt_to_lt ? x) - [apply (eq_plus_to_le ? ? (x \mod m2)). - apply div_mod. - assumption - |assumption - ] - ] - ] - |apply not_le_to_lt.unfold.intro. - generalize in match H5. - apply (le_n_O_elim ? H7). - rewrite < times_n_O. - apply le_to_not_lt. - apply le_O_n - ] +lemma sub_lt: ∀A,e,p,n,m. n ≤ m → + sub_hk (λx.x) (λx.x) A (mk_range A e n p) (mk_range A e m p). +#A #e #f #n #m #lenm #i #lti #fi % // % /2 by lt_to_le_to_lt/ +qed. + +theorem transitive_sub: ∀h1,k1,h2,k2,A,I,J,K. + sub_hk h1 k1 A I J → sub_hk h2 k2 A J K → + sub_hk (λx.h2(h1 x)) (λx.k1(k2 x)) A I K. +#h1 #k1 #h2 #k2 #A #I #J #K #sub1 #sub2 #i #lti #fi +cases(sub1 i lti fi) * #lth1i #fh1i #ei +cases(sub2 (h1 i) lth1i fh1i) * #H1 #H2 #H3 % // % // +qed. + +theorem bigop_iso: ∀n1,n2,p1,p2,B.∀nil.∀op:ACop B nil.∀f1,f2. + iso B (mk_range B f1 n1 p1) (mk_range B f2 n2 p2) → + \big[op,nil]_{ibigop_Sfalse + [@(Hind ? (le_O_n ?)) [/2/ | @(transitive_sub … (sub_lt …) sub2) //] + |@(sub0_to_false … sub2) // ] - |apply (eq_iter_p_gen_gh ? ? ? H H1 H2 ? h h1);intros - [cut (O < m2) - [cut (i/m2 < n2) - [cut (i \mod m2 < m2) - [elim (and_true ? ? H6). - elim (H3 ? ? Hcut1 Hcut2 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))/m1 = - h11 (i/m2) (i\mod m2)) - [cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))\mod m1 = - h12 (i/m2) (i\mod m2)) - [rewrite > Hcut3. - rewrite > Hcut4. - rewrite > H9. - rewrite > H15. - reflexivity - |apply mod_plus_times. - assumption - ] - |apply div_plus_times. - assumption - ] - |apply lt_mod_m_m. - assumption - ] - |apply (lt_times_n_to_lt m2) - [assumption - |apply (le_to_lt_to_lt ? i) - [apply (eq_plus_to_le ? ? (i \mod m2)). - apply div_mod. - assumption - |assumption - ] - ] - ] - |apply not_le_to_lt.unfold.intro. - generalize in match H5. - apply (le_n_O_elim ? H7). - rewrite < times_n_O. - apply le_to_not_lt. - apply le_O_n - ] - |cut (O < m2) - [cut (i/m2 < n2) - [cut (i \mod m2 < m2) - [elim (and_true ? ? H6). - elim (H3 ? ? Hcut1 Hcut2 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))/m1 = - h11 (i/m2) (i\mod m2)) - [cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))\mod m1 = - h12 (i/m2) (i\mod m2)) - [rewrite > Hcut3. - rewrite > Hcut4. - rewrite > H13. - rewrite > H14. - apply sym_eq. - apply div_mod. - assumption - |apply mod_plus_times. - assumption - ] - |apply div_plus_times. - assumption - ] - |apply lt_mod_m_m. - assumption - ] - |apply (lt_times_n_to_lt m2) - [assumption - |apply (le_to_lt_to_lt ? i) - [apply (eq_plus_to_le ? ? (i \mod m2)). - apply div_mod. - assumption - |assumption - ] - ] - ] - |apply not_le_to_lt.unfold.intro. - generalize in match H5. - apply (le_n_O_elim ? H7). - rewrite < times_n_O. - apply le_to_not_lt. - apply le_O_n - ] - |cut (O < m2) - [cut (i/m2 < n2) - [cut (i \mod m2 < m2) - [elim (and_true ? ? H6). - elim (H3 ? ? Hcut1 Hcut2 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - apply lt_times_plus_times - [assumption|assumption] - |apply lt_mod_m_m. - assumption - ] - |apply (lt_times_n_to_lt m2) - [assumption - |apply (le_to_lt_to_lt ? i) - [apply (eq_plus_to_le ? ? (i \mod m2)). - apply div_mod. - assumption - |assumption - ] - ] - ] - |apply not_le_to_lt.unfold.intro. - generalize in match H5. - apply (le_n_O_elim ? H7). - rewrite < times_n_O. - apply le_to_not_lt. - apply le_O_n + |#n #Hind #p2 #ltn #sub1 #sub2 (cut (n ≤n1)) [/2/] #len + cases(true_or_false (p1 n)) #p1n + [>bigop_Strue // (cases (sub1 n (le_n …) p1n)) * #hn #p2hn #eqn + >(bigop_diff … (h n) n2) // >same // + @eq_f @(Hind ? len) + [#i #ltin #p1i (cases (sub1 i (le_S … ltin) p1i)) * + #h1i #p2h1i #eqi % // % // >not_eq_to_eqb_false normalize // + @(not_to_not ??? (lt_to_not_eq ? ? ltin)) // + |#j #ltj #p2j (cases (sub2 j ltj (andb_true_r …p2j))) * + #ltkj #p1kj #eqj % // % // + (cases (le_to_or_lt_eq …(le_S_S_to_le …ltkj))) // + #eqkj @False_ind lapply p2j @eqb_elim + normalize /2/ ] - |cut (O < m1) - [cut (j/m1 < n1) - [cut (j \mod m1 < m1) - [elim (and_true ? ? H6). - elim (H4 ? ? Hcut1 Hcut2 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))/m2 = - h21 (j/m1) (j\mod m1)) - [cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))\mod m2 = - h22 (j/m1) (j\mod m1)) - [rewrite > Hcut3. - rewrite > Hcut4. - rewrite > H9. - rewrite > H15. - reflexivity - |apply mod_plus_times. - assumption - ] - |apply div_plus_times. - assumption - ] - |apply lt_mod_m_m. - assumption - ] - |apply (lt_times_n_to_lt m1) - [assumption - |apply (le_to_lt_to_lt ? j) - [apply (eq_plus_to_le ? ? (j \mod m1)). - apply div_mod. - assumption - |assumption - ] - ] - ] - |apply not_le_to_lt.unfold.intro. - generalize in match H5. - apply (le_n_O_elim ? H7). - rewrite < times_n_O. - apply le_to_not_lt. - apply le_O_n - ] - |cut (O < m1) - [cut (j/m1 < n1) - [cut (j \mod m1 < m1) - [elim (and_true ? ? H6). - elim (H4 ? ? Hcut1 Hcut2 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))/m2 = - h21 (j/m1) (j\mod m1)) - [cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))\mod m2 = - h22 (j/m1) (j\mod m1)) - [rewrite > Hcut3. - rewrite > Hcut4. - rewrite > H13. - rewrite > H14. - apply sym_eq. - apply div_mod. - assumption - |apply mod_plus_times. - assumption - ] - |apply div_plus_times. - assumption - ] - |apply lt_mod_m_m. - assumption - ] - |apply (lt_times_n_to_lt m1) - [assumption - |apply (le_to_lt_to_lt ? j) - [apply (eq_plus_to_le ? ? (j \mod m1)). - apply div_mod. - assumption - |assumption - ] - ] - ] - |apply not_le_to_lt.unfold.intro. - generalize in match H5. - apply (le_n_O_elim ? H7). - rewrite < times_n_O. - apply le_to_not_lt. - apply le_O_n - ] - |cut (O < m1) - [cut (j/m1 < n1) - [cut (j \mod m1 < m1) - [elim (and_true ? ? H6). - elim (H4 ? ? Hcut1 Hcut2 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - apply (lt_times_plus_times ? ? ? m2) - [assumption|assumption] - |apply lt_mod_m_m. - assumption - ] - |apply (lt_times_n_to_lt m1) - [assumption - |apply (le_to_lt_to_lt ? j) - [apply (eq_plus_to_le ? ? (j \mod m1)). - apply div_mod. - assumption - |assumption - ] - ] - ] - |apply not_le_to_lt.unfold.intro. - generalize in match H5. - apply (le_n_O_elim ? H7). - rewrite < times_n_O. - apply le_to_not_lt. - apply le_O_n - ] - ] - ] -qed.*) - - -theorem iter_p_gen_2_eq: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to nat \to A. -\forall h11,h12,h21,h22: nat \to nat \to nat. -\forall n1,m1,n2,m2. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to -p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true -\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j -\land h11 i j < n1 \land h12 i j < m1) \to -(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to -p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true -\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j -\land (h21 i j) < n2 \land (h22 i j) < m2) \to -iter_p_gen n1 p11 A - (\lambda x:nat .iter_p_gen m1 (p12 x) A (\lambda y. g x y) baseA plusA) - baseA plusA = -iter_p_gen n2 p21 A - (\lambda x:nat .iter_p_gen m2 (p22 x) A (\lambda y. g (h11 x y) (h12 x y)) baseA plusA ) - baseA plusA. - -intros. -rewrite < (iter_p_gen2' ? ? ? ? ? ? ? ? H H1 H2). -letin ha:= (\lambda x,y.(((h11 x y)*m1) + (h12 x y))). -letin ha12:= (\lambda x.(h21 (x/m1) (x \mod m1))). -letin ha22:= (\lambda x.(h22 (x/m1) (x \mod m1))). - -apply (trans_eq ? ? -(iter_p_gen n2 p21 A (\lambda x:nat. iter_p_gen m2 (p22 x) A - (\lambda y:nat.(g (((h11 x y)*m1+(h12 x y))/m1) (((h11 x y)*m1+(h12 x y))\mod m1))) baseA plusA ) baseA plusA)) -[ - apply (iter_p_gen_knm A baseA plusA H H1 H2 (\lambda e. (g (e/m1) (e \mod m1))) ha ha12 ha22);intros - [ elim (and_true ? ? H6). - cut(O \lt m1) - [ cut(x/m1 < n1) - [ cut((x \mod m1) < m1) - [ elim (H4 ? ? Hcut1 Hcut2 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - split - [ split - [ split - [ split - [ assumption - | assumption - ] - | unfold ha. - unfold ha12. - unfold ha22. - rewrite > H14. - rewrite > H13. - apply sym_eq. - apply div_mod. - assumption - ] - | assumption - ] - | assumption - ] - | apply lt_mod_m_m. - assumption - ] - | apply (lt_times_n_to_lt m1) - [ assumption - | apply (le_to_lt_to_lt ? x) - [ apply (eq_plus_to_le ? ? (x \mod m1)). - apply div_mod. - assumption - | assumption - ] - ] - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H5. - apply (le_n_O_elim ? H9). - rewrite < times_n_O. - apply le_to_not_lt. - apply le_O_n. - ] - | elim (H3 ? ? H5 H6 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - cut(((h11 i j)*m1 + (h12 i j))/m1 = (h11 i j)) - [ cut(((h11 i j)*m1 + (h12 i j)) \mod m1 = (h12 i j)) - [ split - [ split - [ split - [ apply true_to_true_to_andb_true - [ rewrite > Hcut. - assumption - | rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | unfold ha. - unfold ha12. - rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | unfold ha. - unfold ha22. - rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | cut(O \lt m1) - [ cut(O \lt n1) - [ apply (lt_to_le_to_lt ? ((h11 i j)*m1 + m1) ) - [ unfold ha. - apply (lt_plus_r). - assumption - | rewrite > sym_plus. - rewrite > (sym_times (h11 i j) m1). - rewrite > times_n_Sm. - rewrite > sym_times. - apply (le_times_l). - assumption - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H12. - apply (le_n_O_elim ? H11). - apply le_to_not_lt. - apply le_O_n - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H10. - apply (le_n_O_elim ? H11). - apply le_to_not_lt. - apply le_O_n - ] - ] - | rewrite > (mod_plus_times m1 (h11 i j) (h12 i j)). - reflexivity. - assumption - ] - | rewrite > (div_plus_times m1 (h11 i j) (h12 i j)). - reflexivity. - assumption - ] - ] -| apply (eq_iter_p_gen1) - [ intros. reflexivity - | intros. - apply (eq_iter_p_gen1) - [ intros. reflexivity - | intros. - rewrite > (div_plus_times) - [ rewrite > (mod_plus_times) - [ reflexivity - | elim (H3 x x1 H5 H7 H6 H8). - assumption - ] - | elim (H3 x x1 H5 H7 H6 H8). - assumption + |>bigop_Sfalse // @(Hind ? len) + [@(transitive_sub … (sub_lt …) sub1) // + |#i #lti #p2i cases(sub2 i lti p2i) * #ltki #p1ki #eqi + % // % // cases(le_to_or_lt_eq …(le_S_S_to_le …ltki)) // + #eqki @False_ind /2/ ] ] ] -] qed. -theorem iter_p_gen_iter_p_gen: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to nat \to A. -\forall n,m. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall x,y. x < n \to y < m \to - (p11 x \land p12 x y) = (p21 y \land p22 y x)) \to -iter_p_gen n p11 A - (\lambda x:nat.iter_p_gen m (p12 x) A (\lambda y. g x y) baseA plusA) - baseA plusA = -iter_p_gen m p21 A - (\lambda y:nat.iter_p_gen n (p22 y) A (\lambda x. g x y) baseA plusA ) - baseA plusA. -intros. -apply (iter_p_gen_2_eq A baseA plusA H H1 H2 (\lambda x,y. g x y) (\lambda x,y.y) (\lambda x,y.x) (\lambda x,y.y) (\lambda x,y.x) - n m m n p11 p21 p12 p22) - [intros.split - [split - [split - [split - [split - [apply (andb_true_true ? (p12 j i)). - rewrite > H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - |apply (andb_true_true_r (p11 j)). - rewrite > H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - ] - |reflexivity - ] - |reflexivity - ] - |assumption +(* commutation *) +theorem bigop_commute: ∀n,m,p11,p12,p21,p22,B.∀nil.∀op:ACop B nil.∀f. +0 < n → 0 < m → +(∀i,j. i < n → j < m → (p11 i ∧ p12 i j) = (p21 j ∧ p22 i j)) → +\big[op,nil]_{ibigop_prod >bigop_prod @bigop_iso +%{(λi.(i\mod m)*n + i/m)} %{(λi.(i\mod n)*m + i/n)} % + [% + [#i #lti #Heq (* whd in ⊢ (???(?(?%?)?)); *) @eq_f2 + [@sym_eq @mod_plus_times /2 by lt_times_to_lt_div/ + |@sym_eq @div_plus_times /2 by lt_times_to_lt_div/ + ] + |#i #lti #Hi + cut ((i\mod m*n+i/m)\mod n=i/m) + [@mod_plus_times @lt_times_to_lt_div //] #H1 + cut ((i\mod m*n+i/m)/n=i \mod m) + [@div_plus_times @lt_times_to_lt_div //] #H2 + %[%[@(lt_to_le_to_lt ? (i\mod m*n+n)) + [whd >plus_n_Sm @monotonic_le_plus_r @lt_times_to_lt_div // + |>commutative_plus @(le_times (S(i \mod m)) m n n) // @lt_mod_m_m // + ] + |lapply (Heq (i/m) (i \mod m) ??) + [@lt_mod_m_m // |@lt_times_to_lt_div //|>Hi >H1 >H2 //] + ] + |>H1 >H2 // ] - |assumption ] - |intros.split - [split - [split - [split - [split - [apply (andb_true_true ? (p22 j i)). - rewrite < H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - |apply (andb_true_true_r (p21 j)). - rewrite < H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - ] - |reflexivity - ] - |reflexivity - ] - |assumption + |#i #lti #Hi + cut ((i\mod n*m+i/n)\mod m=i/n) + [@mod_plus_times @lt_times_to_lt_div //] #H1 + cut ((i\mod n*m+i/n)/m=i \mod n) + [@div_plus_times @lt_times_to_lt_div //] #H2 + %[%[@(lt_to_le_to_lt ? (i\mod n*m+m)) + [whd >plus_n_Sm @monotonic_le_plus_r @lt_times_to_lt_div // + |>commutative_plus @(le_times (S(i \mod n)) n m m) // @lt_mod_m_m // + ] + |lapply (Heq (i \mod n) (i/n) ??) + [@lt_times_to_lt_div // |@lt_mod_m_m // |>Hi >H1 >H2 //] ] - |assumption + |>H1 >H2 // ] ] -qed. \ No newline at end of file +qed. + +(* distributivity *) + +record Dop (A:Type[0]) (nil:A): Type[0] ≝ + {sum : ACop A nil; + prod: A → A →A; + null: \forall a. prod a nil = nil; + distr: ∀a,b,c:A. prod a (sum b c) = sum (prod a b) (prod a c) + }. + +theorem bigop_distr: ∀n,p,B,nil.∀R:Dop B nil.∀f,a. + let aop ≝ sum B nil R in + let mop ≝ prod B nil R in + mop a \big[aop,nil]_{ibigop_Strue // >bigop_Strue // >(distr B nil R) >Hind // + |>bigop_Sfalse // >bigop_Sfalse // + ] +qed.