X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Farithmetics%2Fnat.ma;h=c707c3207c985267d76ff35ed37cde111a104bb4;hb=225887a9f23aac79d4cca907da026917b7df04dc;hp=edb99b8c0c9dac85517e253e9282d7f34597bd89;hpb=8a5391064ec6e84333444453f836ef9cb91fee7b;p=helm.git diff --git a/matita/matita/lib/arithmetics/nat.ma b/matita/matita/lib/arithmetics/nat.ma index edb99b8c0..c707c3207 100644 --- a/matita/matita/lib/arithmetics/nat.ma +++ b/matita/matita/lib/arithmetics/nat.ma @@ -305,6 +305,10 @@ lemma lt_to_le: ∀x,y. x < y → x ≤ y. lemma inv_eq_minus_O: ∀x,y. x - y = 0 → x ≤ y. // qed-. +lemma le_x_times_x: ∀x. x ≤ x * x. +#x elim x -x // +qed. + (* lt *) theorem transitive_lt: transitive nat lt. @@ -435,6 +439,10 @@ theorem decidable_lt: ∀n,m. decidable (n < m). theorem le_to_or_lt_eq: ∀n,m:nat. n ≤ m → n < m ∨ n = m. #n #m #lenm (elim lenm) /3/ qed. +theorem eq_or_gt: ∀n. 0 = n ∨ 0 < n. +#n elim (le_to_or_lt_eq 0 n ?) // /2 width=1/ +qed-. + theorem increasing_to_le2: ∀f:nat → nat. increasing f → ∀m:nat. f 0 ≤ m → ∃i. f i ≤ m ∧ m < f (S i). #f #incr #m #lem (elim lem) @@ -491,6 +499,31 @@ cut (∀q:nat. q ≤ n → P q) /2/ ] qed. +fact f_ind_aux: ∀A. ∀f:A→ℕ. ∀P:predicate A. + (∀n. (∀a. f a < n → P a) → ∀a. f a = n → P a) → + ∀n,a. f a = n → P a. +#A #f #P #H #n @(nat_elim1 … n) -n #n /3 width=3/ (**) (* auto slow (34s) without #n *) +qed-. + +lemma f_ind: ∀A. ∀f:A→ℕ. ∀P:predicate A. + (∀n. (∀a. f a < n → P a) → ∀a. f a = n → P a) → ∀a. P a. +#A #f #P #H #a +@(f_ind_aux … H) -H [2: // | skip ] +qed-. + +fact f2_ind_aux: ∀A1,A2. ∀f:A1→A2→ℕ. ∀P:relation2 A1 A2. + (∀n. (∀a1,a2. f a1 a2 < n → P a1 a2) → ∀a1,a2. f a1 a2 = n → P a1 a2) → + ∀n,a1,a2. f a1 a2 = n → P a1 a2. +#A1 #A2 #f #P #H #n @(nat_elim1 … n) -n #n /3 width=3/ (**) (* auto slow (34s) without #n *) +qed-. + +lemma f2_ind: ∀A1,A2. ∀f:A1→A2→ℕ. ∀P:relation2 A1 A2. + (∀n. (∀a1,a2. f a1 a2 < n → P a1 a2) → ∀a1,a2. f a1 a2 = n → P a1 a2) → + ∀a1,a2. P a1 a2. +#A1 #A2 #f #P #H #a1 #a2 +@(f2_ind_aux … H) -H [2: // | skip ] +qed-. + (* More negated equalities **************************************************) theorem lt_to_not_eq : ∀n,m:nat. n < m → n ≠ m.