X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Farithmetics%2Fsigma_pi.ma;h=8d2a5858ab2d842302cc873c1756c3008ce9d5cc;hb=d67b6a744a51aa8f0e33ea4bf5ff29ffce762ccb;hp=d92d525b7c37b9c5c200c6f5a6ffc15db8a974b5;hpb=7ad16d18416a08382d62747fce4a0ac18ee557e0;p=helm.git diff --git a/matita/matita/lib/arithmetics/sigma_pi.ma b/matita/matita/lib/arithmetics/sigma_pi.ma index d92d525b7..8d2a5858a 100644 --- a/matita/matita/lib/arithmetics/sigma_pi.ma +++ b/matita/matita/lib/arithmetics/sigma_pi.ma @@ -9,41 +9,14 @@ \ / V_______________________________________________________________ *) +include "arithmetics/primes.ma". include "arithmetics/bigops.ma". -definition natAop ≝ mk_Aop nat 0 plus (λa.refl ? a) (λn.sym_eq ??? (plus_n_O n)) - (λa,b,c.sym_eq ??? (associative_plus a b c)). - -definition natACop ≝ mk_ACop nat 0 natAop commutative_plus. - -definition natDop ≝ mk_Dop nat 0 natACop times (λn.(sym_eq ??? (times_n_O n))) - distributive_times_plus. - -unification hint 0 ≔ ; - S ≟ natAop -(* ---------------------------------------- *) ⊢ - plus ≡ op ? ? S. - -unification hint 0 ≔ ; - S ≟ natACop -(* ---------------------------------------- *) ⊢ - plus ≡ op ? ? S. - -unification hint 0 ≔ ; - S ≟ natDop -(* ---------------------------------------- *) ⊢ - plus ≡ sum ? ? S. - -unification hint 0 ≔ ; - S ≟ natDop -(* ---------------------------------------- *) ⊢ - times ≡ prod ? ? S. - (* Sigma e Pi *) notation "∑_{ ident i < n | p } f" with precedence 80 -for @{'bigop $n plus 0 (λ${ident i}.$p) (λ${ident i}. $f)}. +for @{'bigop $n plus 0 (λ${ident i}. $p) (λ${ident i}. $f)}. notation "∑_{ ident i < n } f" with precedence 80 @@ -77,671 +50,150 @@ notation "∏_{ ident j ∈ [a,b[ | p } f" for @{'bigop ($b-$a) times 1 (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a))) (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. - -(* - -definition p_ord_times \def -\lambda p,m,x. - match p_ord x p with - [pair q r \Rightarrow r*m+q]. - -theorem eq_p_ord_times: \forall p,m,x. -p_ord_times p m x = (ord_rem x p)*m+(ord x p). -intros.unfold p_ord_times. unfold ord_rem. -unfold ord. -elim (p_ord x p). -reflexivity. -qed. +(* instances of associative and commutative operations *) -theorem div_p_ord_times: -\forall p,m,x. ord x p < m \to p_ord_times p m x / m = ord_rem x p. -intros.rewrite > eq_p_ord_times. -apply div_plus_times. -assumption. -qed. +definition plusA ≝ mk_Aop nat 0 plus (λa.refl ? a) (λn.sym_eq ??? (plus_n_O n)) + (λa,b,c.sym_eq ??? (associative_plus a b c)). + +definition plusAC ≝ mk_ACop nat 0 plusA commutative_plus. -theorem mod_p_ord_times: -\forall p,m,x. ord x p < m \to p_ord_times p m x \mod m = ord x p. -intros.rewrite > eq_p_ord_times. -apply mod_plus_times. -assumption. -qed. +definition timesA ≝ mk_Aop nat 1 times + (λa.sym_eq ??? (plus_n_O a)) (λn.sym_eq ??? (times_n_1 n)) + (λa,b,c.sym_eq ??? (associative_times a b c)). + +definition timesAC ≝ mk_ACop nat 1 timesA commutative_times. -lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m. -intros. -elim (le_to_or_lt_eq O ? (le_O_n m)) - [assumption - |apply False_ind. - rewrite < H1 in H. - rewrite < times_n_O in H. - apply (not_le_Sn_O ? H) - ] -qed. +definition natD ≝ mk_Dop nat 0 plusAC times (λn.(sym_eq ??? (times_n_O n))) + distributive_times_plus. + +(********************************************************) -theorem iter_p_gen_knm: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to A. -\forall h2:nat \to nat \to nat. -\forall h11,h12:nat \to nat. -\forall k,n,m. -\forall p1,p21:nat \to bool. -\forall p22:nat \to nat \to bool. -(\forall x. x < k \to p1 x = true \to -p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true -\land h2 (h11 x) (h12 x) = x -\land (h11 x) < n \land (h12 x) < m) \to -(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to -p1 (h2 i j) = true \land -h11 (h2 i j) = i \land h12 (h2 i j) = j -\land h2 i j < k) \to -iter_p_gen k p1 A g baseA plusA = -iter_p_gen n p21 A (\lambda x:nat.iter_p_gen m (p22 x) A (\lambda y. g (h2 x y)) baseA plusA) baseA plusA. -intros. -rewrite < (iter_p_gen2' n m p21 p22 ? ? ? ? H H1 H2). -apply sym_eq. -apply (eq_iter_p_gen_gh A baseA plusA H H1 H2 g ? (\lambda x.(h11 x)*m+(h12 x))) - [intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - assumption - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - rewrite > H10. - rewrite > H9. - apply sym_eq. - apply div_mod. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - assumption - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - rewrite > div_plus_times - [rewrite > mod_plus_times - [rewrite > H9. - rewrite > H12. - reflexivity. - |assumption - ] - |assumption - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - rewrite > div_plus_times - [rewrite > mod_plus_times - [assumption - |assumption - ] - |assumption - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - apply (lt_to_le_to_lt ? ((h11 j)*m+m)) - [apply monotonic_lt_plus_r. - assumption - |rewrite > sym_plus. - change with ((S (h11 j)*m) \le n*m). - apply monotonic_le_times_l. - assumption - ] - ] +theorem sigma_const: ∀n:nat. ∑_{ibigop_Strue // qed. -theorem iter_p_gen_divides: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -\forall n,m,p:nat.O < n \to prime p \to Not (divides p n) \to -\forall g: nat \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) - -\to +(* monotonicity; these roperty should be expressed at a more +genral level *) + +theorem le_sigma: +∀n:nat. ∀p1,p2:nat → bool. ∀g1,g2:nat → nat. +(∀i. i < n → p1 i = true → p2 i = true ) → +(∀i. i < n → p1 i = true → g1 i ≤ g2 i ) → + ∑_{i < n | p1 i} (g1 i) ≤ ∑_{i < n | p2 i} (g2 i). +#n #p1 #p2 #g1 #g2 elim n + [#_ #_ @le_n + |#n1 #Hind #H1 #H2 + lapply (Hind ??) + [#j #ltin1 #Hgj @(H2 … Hgj) @le_S // + |#j #ltin1 #Hp1j @(H1 … Hp1j) @le_S // + ] -Hind #Hind + cases (true_or_false (p2 n1)) #Hp2 + [>bigop_Strue in ⊢ (??%); [2:@Hp2] + cases (true_or_false (p1 n1)) #Hp1 + [>bigop_Strue [2:@Hp1] @(le_plus … Hind) @H2 // + |>bigop_Sfalse [2:@Hp1] @le_plus_a // + ] + |cut (p1 n1 = false) + [cases (true_or_false (p1 n1)) #Hp1 + [>(H1 … (le_n ?) Hp1) in Hp2; #H destruct (H) | //] + ] #Hp1 + >bigop_Sfalse [2:@Hp1] >bigop_Sfalse [2:@Hp2] // + ] + ] +qed. -iter_p_gen (S (n*(exp p m))) (\lambda x.divides_b x (n*(exp p m))) A g baseA plusA = -iter_p_gen (S n) (\lambda x.divides_b x n) A - (\lambda x.iter_p_gen (S m) (\lambda y.true) A (\lambda y.g (x*(exp p y))) baseA plusA) baseA plusA. -intros. -cut (O < p) - [rewrite < (iter_p_gen2 ? ? ? ? ? ? ? ? H3 H4 H5). - apply (trans_eq ? ? - (iter_p_gen (S n*S m) (\lambda x:nat.divides_b (x/S m) n) A - (\lambda x:nat.g (x/S m*(p)\sup(x\mod S m))) baseA plusA) ) - [apply sym_eq. - apply (eq_iter_p_gen_gh ? ? ? ? ? ? g ? (p_ord_times p (S m))) - [ assumption - | assumption - | assumption - |intros. - lapply (divides_b_true_to_lt_O ? ? H H7). - apply divides_to_divides_b_true - [rewrite > (times_n_O O). - apply lt_times - [assumption - |apply lt_O_exp.assumption - ] - |apply divides_times - [apply divides_b_true_to_divides.assumption - |apply (witness ? ? (p \sup (m-i \mod (S m)))). - rewrite < exp_plus_times. - apply eq_f. - rewrite > sym_plus. - apply plus_minus_m_m. - autobatch by le_S_S_to_le, lt_mod_m_m, lt_O_S; - ] - ] - |intros. - lapply (divides_b_true_to_lt_O ? ? H H7). - unfold p_ord_times. - rewrite > (p_ord_exp1 p ? (i \mod (S m)) (i/S m)) - [change with ((i/S m)*S m+i \mod S m=i). - apply sym_eq. - apply div_mod. - apply lt_O_S - |assumption - |unfold Not.intro. - apply H2. - apply (trans_divides ? (i/ S m)) - [assumption| - apply divides_b_true_to_divides;assumption] - |apply sym_times. - ] - |intros. - apply le_S_S. - apply le_times - [apply le_S_S_to_le. - change with ((i/S m) < S n). - apply (lt_times_to_lt_l m). - apply (le_to_lt_to_lt ? i);[2:assumption] - autobatch by eq_plus_to_le, div_mod, lt_O_S. - |apply le_exp - [assumption - |apply le_S_S_to_le. - apply lt_mod_m_m. - apply lt_O_S - ] - ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_times - [apply divides_to_divides_b_true - [apply lt_O_ord_rem - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |cut (n = ord_rem (n*(exp p m)) p) - [rewrite > Hcut2. - apply divides_to_divides_ord_rem - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord_rem. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |assumption - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_times - [rewrite > mod_p_ord_times - [rewrite > sym_times. - apply sym_eq. - apply exp_ord - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut2. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |assumption - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |intros. - rewrite > eq_p_ord_times. - rewrite > sym_plus. - apply (lt_to_le_to_lt ? (S m +ord_rem j p*S m)) - [apply lt_plus_l. - apply le_S_S. - cut (m = ord (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |reflexivity - ] - ] - |change with (S (ord_rem j p)*S m \le S n*S m). - apply le_times_l. - apply le_S_S. - cut (n = ord_rem (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le - [apply lt_O_ord_rem - [elim H1.assumption - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |apply divides_to_divides_ord_rem - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - ] - |unfold ord_rem. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |reflexivity - ] - ] +theorem lt_sigma_p: +∀n:nat. ∀p1,p2:nat → bool. ∀g1,g2:nat → nat. +(∀i. i < n → p1 i = true → p2 i = true) → +(∀i. i < n → p1 i = true → g1 i ≤ g2 i ) → +(∃i. i < n ∧ ((p1 i = true) ∧ (g1 i < g2 i) + ∨ (p1 i = false ∧ (p2 i = true) ∧ (0 < g2 i)))) → + ∑_{i < n | p1 i} (g1 i) < ∑_{i < n | p2 i} (g2 i). +#n #p1 #p2 #g1 #g2 #H1 #H2 * #k * #ltk * + [* #p1k #gk + lapply (H1 k ltk p1k) #p2k + >(bigop_diff p1 ?? plusAC … ltk p1k) + >(bigop_diff p2 ?? plusAC … ltk p2k) whd + cut (∀a,b. S a + b = S(a +b)) [//] #Hplus (bigop_diff p2 ?? plusAC … ltk p2k) whd + cut (∀a. S 0 + a = S a) [//] #H0 <(H0 (bigop n ?????)) @le_plus + [@posg2 + |@le_sigma + [#i #ltin #H @true_to_andb_true + [cases (true_or_false (eqb k i)) #Hc >Hc + [normalize (eqb_true_to_eq … Hc) //|//] + |@(H1 i ltin) @H] + |#i #ltin #H @(H2 i ltin) @H + ] + ] +qed. + +theorem le_pi: +∀n.∀p:nat → bool.∀g1,g2:nat → nat. + (∀i.ibigop_Strue // >bigop_Strue // @le_times + [@Hle // |@Hind #i #lti #Hpi @Hle [@lt_to_le @le_S_S @lti|@Hpi]] + |>bigop_Sfalse // >bigop_Sfalse // @Hind + #i #lti #Hpi @Hle [@lt_to_le @le_S_S @lti|@Hpi] ] ] -|elim H1.apply lt_to_le.assumption -] qed. - +theorem exp_sigma: ∀n,a,p. + ∏_{i < n | p i} a = exp a (∑_{i < n | p i} 1). +#n #a #p elim n // #n1 cases (true_or_false (p n1)) #Hcase + [>bigop_Strue // >bigop_Strue // |>bigop_Sfalse // >bigop_Sfalse //] +qed. -theorem iter_p_gen_2_eq: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to nat \to A. -\forall h11,h12,h21,h22: nat \to nat \to nat. -\forall n1,m1,n2,m2. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to -p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true -\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j -\land h11 i j < n1 \land h12 i j < m1) \to -(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to -p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true -\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j -\land (h21 i j) < n2 \land (h22 i j) < m2) \to -iter_p_gen n1 p11 A - (\lambda x:nat .iter_p_gen m1 (p12 x) A (\lambda y. g x y) baseA plusA) - baseA plusA = -iter_p_gen n2 p21 A - (\lambda x:nat .iter_p_gen m2 (p22 x) A (\lambda y. g (h11 x y) (h12 x y)) baseA plusA ) - baseA plusA. +theorem times_pi: ∀n,p,f,g. + ∏_{ibigop_Strue // >bigop_Strue // >bigop_Strue // + |>bigop_Sfalse // >bigop_Sfalse // >bigop_Sfalse // + ] +qed. -intros. -rewrite < (iter_p_gen2' ? ? ? ? ? ? ? ? H H1 H2). -letin ha:= (\lambda x,y.(((h11 x y)*m1) + (h12 x y))). -letin ha12:= (\lambda x.(h21 (x/m1) (x \mod m1))). -letin ha22:= (\lambda x.(h22 (x/m1) (x \mod m1))). +theorem pi_1: ∀n,p. + ∏_{i < n | p i} 1 = 1. +#n #p elim n // #n1 #Hind cases (true_or_false (p n1)) #Hc + [>bigop_Strue >Hind // |>bigop_Sfalse // ] +qed. -apply (trans_eq ? ? -(iter_p_gen n2 p21 A (\lambda x:nat. iter_p_gen m2 (p22 x) A - (\lambda y:nat.(g (((h11 x y)*m1+(h12 x y))/m1) (((h11 x y)*m1+(h12 x y))\mod m1))) baseA plusA ) baseA plusA)) -[ - apply (iter_p_gen_knm A baseA plusA H H1 H2 (\lambda e. (g (e/m1) (e \mod m1))) ha ha12 ha22);intros - [ elim (and_true ? ? H6). - cut(O \lt m1) - [ cut(x/m1 < n1) - [ cut((x \mod m1) < m1) - [ elim (H4 ? ? Hcut1 Hcut2 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - split - [ split - [ split - [ split - [ assumption - | assumption - ] - | unfold ha. - unfold ha12. - unfold ha22. - rewrite > H14. - rewrite > H13. - apply sym_eq. - apply div_mod. - assumption - ] - | assumption - ] - | assumption - ] - | apply lt_mod_m_m. - assumption - ] - | apply (lt_times_n_to_lt m1) - [ assumption - | apply (le_to_lt_to_lt ? x) - [ apply (eq_plus_to_le ? ? (x \mod m1)). - apply div_mod. - assumption - | assumption - ] - ] - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H5. - apply (le_n_O_elim ? H9). - rewrite < times_n_O. - apply le_to_not_lt. - apply le_O_n. - ] - | elim (H3 ? ? H5 H6 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - cut(((h11 i j)*m1 + (h12 i j))/m1 = (h11 i j)) - [ cut(((h11 i j)*m1 + (h12 i j)) \mod m1 = (h12 i j)) - [ split - [ split - [ split - [ apply true_to_true_to_andb_true - [ rewrite > Hcut. - assumption - | rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | unfold ha. - unfold ha12. - rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | unfold ha. - unfold ha22. - rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | cut(O \lt m1) - [ cut(O \lt n1) - [ apply (lt_to_le_to_lt ? ((h11 i j)*m1 + m1) ) - [ unfold ha. - apply (lt_plus_r). - assumption - | rewrite > sym_plus. - rewrite > (sym_times (h11 i j) m1). - rewrite > times_n_Sm. - rewrite > sym_times. - apply (le_times_l). - assumption - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H12. - apply (le_n_O_elim ? H11). - apply le_to_not_lt. - apply le_O_n - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H10. - apply (le_n_O_elim ? H11). - apply le_to_not_lt. - apply le_O_n - ] - ] - | rewrite > (mod_plus_times m1 (h11 i j) (h12 i j)). - reflexivity. - assumption - ] - | rewrite > (div_plus_times m1 (h11 i j) (h12 i j)). - reflexivity. - assumption - ] - ] -| apply (eq_iter_p_gen1) - [ intros. reflexivity - | intros. - apply (eq_iter_p_gen1) - [ intros. reflexivity - | intros. - rewrite > (div_plus_times) - [ rewrite > (mod_plus_times) - [ reflexivity - | elim (H3 x x1 H5 H7 H6 H8). - assumption - ] - | elim (H3 x x1 H5 H7 H6 H8). - assumption - ] - ] +theorem exp_pi: ∀n,m,p,f. + ∏_{i < n | p i}(exp (f i) m) = exp (∏_{i < n | p i}(f i)) m. +#n #m #p #f elim m + [@pi_1 + |#m1 #Hind >times_pi >Hind % ] -] qed. -theorem iter_p_gen_iter_p_gen: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to nat \to A. -\forall n,m. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall x,y. x < n \to y < m \to - (p11 x \land p12 x y) = (p21 y \land p22 y x)) \to -iter_p_gen n p11 A - (\lambda x:nat.iter_p_gen m (p12 x) A (\lambda y. g x y) baseA plusA) - baseA plusA = -iter_p_gen m p21 A - (\lambda y:nat.iter_p_gen n (p22 y) A (\lambda x. g x y) baseA plusA ) - baseA plusA. -intros. -apply (iter_p_gen_2_eq A baseA plusA H H1 H2 (\lambda x,y. g x y) (\lambda x,y.y) (\lambda x,y.x) (\lambda x,y.y) (\lambda x,y.x) - n m m n p11 p21 p12 p22) - [intros.split - [split - [split - [split - [split - [apply (andb_true_true ? (p12 j i)). - rewrite > H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - |apply (andb_true_true_r (p11 j)). - rewrite > H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - ] - |reflexivity - ] - |reflexivity - ] - |assumption - ] - |assumption - ] - |intros.split - [split - [split - [split - [split - [apply (andb_true_true ? (p22 j i)). - rewrite < H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - |apply (andb_true_true_r (p21 j)). - rewrite < H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - ] - |reflexivity - ] - |reflexivity - ] - |assumption - ] - |assumption - ] +theorem exp_sigma_l: ∀n,a,p,f. + ∏_{i < n | p i} (exp a (f i)) = exp a (∑_{i < n | p i}(f i)). +#n #a #p #f elim n // #i #Hind cases (true_or_false (p i)) #Hc + [>bigop_Strue [>bigop_Strue [>Hind >exp_plus_times // |//] |//] + |>bigop_Sfalse [>bigop_Sfalse [@Hind|//] | //] ] -qed. *) \ No newline at end of file +qed. + +theorem exp_pi_l: ∀n,a,f. + exp a n*(∏_{i < n}(f i)) = ∏_{i < n} (a*(f i)). +#n #a #f elim n // #i #Hind >bigop_Strue // >bigop_Strue // +