X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Flists%2Flist.ma;h=2ed7fcc868a9f1434e888f2f2400e365958ea130;hb=913512bbc9202f2109d53acd43dc8c0270b17184;hp=a1ffa3995f5f6c21251e8b38c34fe22c1c4b6373;hpb=471aadb252fa56a9d8fe484da01fdcff0d12814c;p=helm.git diff --git a/matita/matita/lib/basics/lists/list.ma b/matita/matita/lib/basics/lists/list.ma index a1ffa3995..2ed7fcc86 100644 --- a/matita/matita/lib/basics/lists/list.ma +++ b/matita/matita/lib/basics/lists/list.ma @@ -31,12 +31,12 @@ notation "hvbox(l1 break @ l2)" interpretation "nil" 'nil = (nil ?). interpretation "cons" 'cons hd tl = (cons ? hd tl). -definition not_nil: ∀A:Type[0].list A → Prop ≝ +definition is_nil: ∀A:Type[0].list A → Prop ≝ λA.λl.match l with [ nil ⇒ True | cons hd tl ⇒ False ]. theorem nil_cons: ∀A:Type[0].∀l:list A.∀a:A. a::l ≠ []. - #A #l #a @nmk #Heq (change with (not_nil ? (a::l))) >Heq // + #A #l #a @nmk #Heq (change with (is_nil ? (a::l))) >Heq // qed. (* @@ -65,12 +65,6 @@ theorem associative_append: ∀A.associative (list A) (append A). #A #l1 #l2 #l3 (elim l1) normalize // qed. -(* deleterio per auto -ntheorem cons_append_commute: - ∀A:Type.∀l1,l2:list A.∀a:A. - a :: (l1 @ l2) = (a :: l1) @ l2. -//; nqed. *) - theorem append_cons:∀A.∀a:A.∀l,l1.l@(a::l1)=(l@[a])@l1. #A #a #l #l1 >associative_append // qed. @@ -85,17 +79,24 @@ theorem nil_to_nil: ∀A.∀l1,l2:list A. #A #l1 #l2 #isnil @(nil_append_elim A l1 l2) /2/ qed. -(* iterators *) +(**************************** iterators ******************************) let rec map (A,B:Type[0]) (f: A → B) (l:list A) on l: list B ≝ match l with [ nil ⇒ nil ? | cons x tl ⇒ f x :: (map A B f tl)]. + +lemma map_append : ∀A,B,f,l1,l2. + (map A B f l1) @ (map A B f l2) = map A B f (l1@l2). +#A #B #f #l1 elim l1 +[ #l2 @refl +| #h #t #IH #l2 normalize // +] qed. let rec foldr (A,B:Type[0]) (f:A → B → B) (b:B) (l:list A) on l :B ≝ match l with [ nil ⇒ b | cons a l ⇒ f a (foldr A B f b l)]. definition filter ≝ λT.λp:T → bool. - foldr T (list T) (λx,l0.if_then_else ? (p x) (x::l0) l0) (nil T). + foldr T (list T) (λx,l0.if p x then x::l0 else l0) (nil T). (* compose f [a1;...;an] [b1;...;bm] = [f a1 b1; ... ;f an b1; ... ;f a1 bm; f an bm] *) @@ -114,11 +115,45 @@ lemma filter_false : ∀A,l,a,p. p a = false → theorem eq_map : ∀A,B,f,g,l. (∀x.f x = g x) → map A B f l = map A B g l. #A #B #f #g #l #eqfg (elim l) normalize // qed. -let rec dprodl (A:Type[0]) (f:A→Type[0]) (l1:list A) (g:(∀a:A.list (f a))) on l1 ≝ -match l1 with - [ nil ⇒ nil ? - | cons a tl ⇒ (map ??(dp ?? a) (g a)) @ dprodl A f tl g - ]. +(**************************** reverse *****************************) +let rec rev_append S (l1,l2:list S) on l1 ≝ + match l1 with + [ nil ⇒ l2 + | cons a tl ⇒ rev_append S tl (a::l2) + ] +. + +definition reverse ≝λS.λl.rev_append S l []. + +lemma reverse_single : ∀S,a. reverse S [a] = [a]. +// qed. + +lemma rev_append_def : ∀S,l1,l2. + rev_append S l1 l2 = (reverse S l1) @ l2 . +#S #l1 elim l1 normalize // +qed. + +lemma reverse_cons : ∀S,a,l. reverse S (a::l) = (reverse S l)@[a]. +#S #a #l whd in ⊢ (??%?); // +qed. + +lemma reverse_append: ∀S,l1,l2. + reverse S (l1 @ l2) = (reverse S l2)@(reverse S l1). +#S #l1 elim l1 [normalize // | #a #tl #Hind #l2 >reverse_cons +>reverse_cons // qed. + +lemma reverse_reverse : ∀S,l. reverse S (reverse S l) = l. +#S #l elim l // #a #tl #Hind >reverse_cons >reverse_append +normalize // qed. + +(* an elimination principle for lists working on the tail; +useful for strings *) +lemma list_elim_left: ∀S.∀P:list S → Prop. P (nil S) → +(∀a.∀tl.P tl → P (tl@[a])) → ∀l. P l. +#S #P #Pnil #Pstep #l <(reverse_reverse … l) +generalize in match (reverse S l); #l elim l // +#a #tl #H >reverse_cons @Pstep // +qed. (**************************** length ******************************) @@ -130,11 +165,19 @@ let rec length (A:Type[0]) (l:list A) on l ≝ notation "|M|" non associative with precedence 60 for @{'norm $M}. interpretation "norm" 'norm l = (length ? l). +lemma length_tail: ∀A,l. length ? (tail A l) = pred (length ? l). +#A #l elim l // +qed. + lemma length_append: ∀A.∀l1,l2:list A. |l1@l2| = |l1|+|l2|. #A #l1 elim l1 // normalize /2/ qed. +lemma length_map: ∀A,B,l.∀f:A→B. length ? (map ?? f l) = length ? l. +#A #B #l #f elim l // #a #tl #Hind normalize // +qed. + (****************************** nth ********************************) let rec nth n (A:Type[0]) (l:list A) (d:A) ≝ match n with @@ -145,13 +188,110 @@ lemma nth_nil: ∀A,a,i. nth i A ([]) a = a. #A #a #i elim i normalize // qed. +(****************************** nth_opt ********************************) +let rec nth_opt (A:Type[0]) (n:nat) (l:list A) on l : option A ≝ +match l with +[ nil ⇒ None ? +| cons h t ⇒ match n with [ O ⇒ Some ? h | S m ⇒ nth_opt A m t ] +]. + +(**************************** All *******************************) + +let rec All (A:Type[0]) (P:A → Prop) (l:list A) on l : Prop ≝ +match l with +[ nil ⇒ True +| cons h t ⇒ P h ∧ All A P t +]. + +lemma All_mp : ∀A,P,Q. (∀a.P a → Q a) → ∀l. All A P l → All A Q l. +#A #P #Q #H #l elim l normalize // +#h #t #IH * /3/ +qed. + +lemma All_nth : ∀A,P,n,l. + All A P l → + ∀a. + nth_opt A n l = Some A a → + P a. +#A #P #n elim n +[ * [ #_ #a #E whd in E:(??%?); destruct + | #hd #tl * #H #_ #a #E whd in E:(??%?); destruct @H + ] +| #m #IH * + [ #_ #a #E whd in E:(??%?); destruct + | #hd #tl * #_ whd in ⊢ (? → ∀_.??%? → ?); @IH + ] +] qed. + +(**************************** Exists *******************************) + +let rec Exists (A:Type[0]) (P:A → Prop) (l:list A) on l : Prop ≝ +match l with +[ nil ⇒ False +| cons h t ⇒ (P h) ∨ (Exists A P t) +]. + +lemma Exists_append : ∀A,P,l1,l2. + Exists A P (l1 @ l2) → Exists A P l1 ∨ Exists A P l2. +#A #P #l1 elim l1 +[ normalize /2/ +| #h #t #IH #l2 * + [ #H /3/ + | #H cases (IH l2 H) /3/ + ] +] qed. + +lemma Exists_append_l : ∀A,P,l1,l2. + Exists A P l1 → Exists A P (l1@l2). +#A #P #l1 #l2 elim l1 +[ * +| #h #t #IH * + [ #H %1 @H + | #H %2 @IH @H + ] +] qed. + +lemma Exists_append_r : ∀A,P,l1,l2. + Exists A P l2 → Exists A P (l1@l2). +#A #P #l1 #l2 elim l1 +[ #H @H +| #h #t #IH #H %2 @IH @H +] qed. + +lemma Exists_add : ∀A,P,l1,x,l2. Exists A P (l1@l2) → Exists A P (l1@x::l2). +#A #P #l1 #x #l2 elim l1 +[ normalize #H %2 @H +| #h #t #IH normalize * [ #H %1 @H | #H %2 @IH @H ] +qed. + +lemma Exists_mid : ∀A,P,l1,x,l2. P x → Exists A P (l1@x::l2). +#A #P #l1 #x #l2 #H elim l1 +[ %1 @H +| #h #t #IH %2 @IH +] qed. + +lemma Exists_map : ∀A,B,P,Q,f,l. +Exists A P l → +(∀a.P a → Q (f a)) → +Exists B Q (map A B f l). +#A #B #P #Q #f #l elim l // +#h #t #IH * [ #H #F %1 @F @H | #H #F %2 @IH [ @H | @F ] ] qed. + +lemma Exists_All : ∀A,P,Q,l. + Exists A P l → + All A Q l → + ∃x. P x ∧ Q x. +#A #P #Q #l elim l [ * | #hd #tl #IH * [ #H1 * #H2 #_ %{hd} /2/ | #H1 * #_ #H2 @IH // ] +qed. + (**************************** fold *******************************) let rec fold (A,B:Type[0]) (op:B → B → B) (b:B) (p:A→bool) (f:A→B) (l:list A) on l :B ≝ match l with [ nil ⇒ b - | cons a l ⇒ if_then_else ? (p a) (op (f a) (fold A B op b p f l)) - (fold A B op b p f l)]. + | cons a l ⇒ + if p a then op (f a) (fold A B op b p f l) + else fold A B op b p f l]. notation "\fold [ op , nil ]_{ ident i ∈ l | p} f" with precedence 80 @@ -228,3 +368,32 @@ lemma length_ltl: ∀A,n,l. |ltl A l n| = |l| - n. #A #n elim n -n /2/ #n #IHn *; normalize /2/ qed. + +(********************** find ******************************) +let rec find (A,B:Type[0]) (f:A → option B) (l:list A) on l : option B ≝ +match l with +[ nil ⇒ None B +| cons h t ⇒ + match f h with + [ None ⇒ find A B f t + | Some b ⇒ Some B b + ] +]. + +(********************** position_of ******************************) +let rec position_of_aux (A:Type[0]) (found: A → bool) (l:list A) (acc:nat) on l : option nat ≝ +match l with +[ nil ⇒ None ? +| cons h t ⇒ + match found h with [true ⇒ Some … acc | false ⇒ position_of_aux … found t (S acc)]]. + +definition position_of: ∀A:Type[0]. (A → bool) → list A → option nat ≝ + λA,found,l. position_of_aux A found l 0. + + +(********************** make_list ******************************) +let rec make_list (A:Type[0]) (a:A) (n:nat) on n : list A ≝ +match n with +[ O ⇒ [ ] +| S m ⇒ a::(make_list A a m) +].