X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Flists%2Flist.ma;h=725f57135f42428760b67c42cdfa1b9e88d4b531;hb=09d38cb67e92bc6cdfe834cb1524a79643cc13e7;hp=2a368527c635d0f463d6e2eb2a652b4a9fba0b77;hpb=a59e4e76e3f91aa7cf6fe81fc6e8ddaaf306f966;p=helm.git diff --git a/matita/matita/lib/basics/lists/list.ma b/matita/matita/lib/basics/lists/list.ma index 2a368527c..725f57135 100644 --- a/matita/matita/lib/basics/lists/list.ma +++ b/matita/matita/lib/basics/lists/list.ma @@ -20,7 +20,7 @@ notation "hvbox(hd break :: tl)" right associative with precedence 47 for @{'cons $hd $tl}. -notation "[ list0 x sep ; ]" +notation "[ list0 term 19 x sep ; ]" non associative with precedence 90 for ${fold right @'nil rec acc @{'cons $x $acc}}. @@ -31,12 +31,12 @@ notation "hvbox(l1 break @ l2)" interpretation "nil" 'nil = (nil ?). interpretation "cons" 'cons hd tl = (cons ? hd tl). -definition not_nil: ∀A:Type[0].list A → Prop ≝ +definition is_nil: ∀A:Type[0].list A → Prop ≝ λA.λl.match l with [ nil ⇒ True | cons hd tl ⇒ False ]. theorem nil_cons: ∀A:Type[0].∀l:list A.∀a:A. a::l ≠ []. - #A #l #a @nmk #Heq (change with (not_nil ? (a::l))) >Heq // + #A #l #a @nmk #Heq (change with (is_nil ? (a::l))) >Heq // qed. (* @@ -55,6 +55,11 @@ definition hd ≝ λA.λl: list A.λd:A. definition tail ≝ λA.λl: list A. match l with [ nil ⇒ [] | cons hd tl ⇒ tl]. + +definition option_hd ≝ + λA.λl:list A. match l with + [ nil ⇒ None ? + | cons a _ ⇒ Some ? a ]. interpretation "append" 'append l1 l2 = (append ? l1 l2). @@ -65,12 +70,6 @@ theorem associative_append: ∀A.associative (list A) (append A). #A #l1 #l2 #l3 (elim l1) normalize // qed. -(* deleterio per auto -ntheorem cons_append_commute: - ∀A:Type.∀l1,l2:list A.∀a:A. - a :: (l1 @ l2) = (a :: l1) @ l2. -//; nqed. *) - theorem append_cons:∀A.∀a:A.∀l,l1.l@(a::l1)=(l@[a])@l1. #A #a #l #l1 >associative_append // qed. @@ -85,6 +84,32 @@ theorem nil_to_nil: ∀A.∀l1,l2:list A. #A #l1 #l2 #isnil @(nil_append_elim A l1 l2) /2/ qed. +lemma cons_injective_l : ∀A.∀a1,a2:A.∀l1,l2.a1::l1 = a2::l2 → a1 = a2. +#A #a1 #a2 #l1 #l2 #Heq destruct // +qed. + +lemma cons_injective_r : ∀A.∀a1,a2:A.∀l1,l2.a1::l1 = a2::l2 → l1 = l2. +#A #a1 #a2 #l1 #l2 #Heq destruct // +qed. + +(* comparing lists *) + +lemma compare_append : ∀A,l1,l2,l3,l4. l1@l2 = l3@l4 → +∃l:list A.(l1 = l3@l ∧ l4=l@l2) ∨ (l3 = l1@l ∧ l2=l@l4). +#A #l1 elim l1 + [#l2 #l3 #l4 #Heq %{l3} %2 % // @Heq + |#a1 #tl1 #Hind #l2 #l3 cases l3 + [#l4 #Heq %{(a1::tl1)} %1 % // @sym_eq @Heq + |#a3 #tl3 #l4 normalize in ⊢ (%→?); #Heq cases (Hind l2 tl3 l4 ?) + [#l * * #Heq1 #Heq2 %{l} + [%1 % // >Heq1 >(cons_injective_l ????? Heq) // + |%2 % // >Heq1 >(cons_injective_l ????? Heq) // + ] + |@(cons_injective_r ????? Heq) + ] + ] + ] +qed. (**************************** iterators ******************************) let rec map (A,B:Type[0]) (f: A → B) (l:list A) on l: list B ≝ @@ -121,11 +146,45 @@ lemma filter_false : ∀A,l,a,p. p a = false → theorem eq_map : ∀A,B,f,g,l. (∀x.f x = g x) → map A B f l = map A B g l. #A #B #f #g #l #eqfg (elim l) normalize // qed. -let rec dprodl (A:Type[0]) (f:A→Type[0]) (l1:list A) (g:(∀a:A.list (f a))) on l1 ≝ -match l1 with - [ nil ⇒ nil ? - | cons a tl ⇒ (map ??(mk_Sig ?? a) (g a)) @ dprodl A f tl g - ]. +(**************************** reverse *****************************) +let rec rev_append S (l1,l2:list S) on l1 ≝ + match l1 with + [ nil ⇒ l2 + | cons a tl ⇒ rev_append S tl (a::l2) + ] +. + +definition reverse ≝λS.λl.rev_append S l []. + +lemma reverse_single : ∀S,a. reverse S [a] = [a]. +// qed. + +lemma rev_append_def : ∀S,l1,l2. + rev_append S l1 l2 = (reverse S l1) @ l2 . +#S #l1 elim l1 normalize // +qed. + +lemma reverse_cons : ∀S,a,l. reverse S (a::l) = (reverse S l)@[a]. +#S #a #l whd in ⊢ (??%?); // +qed. + +lemma reverse_append: ∀S,l1,l2. + reverse S (l1 @ l2) = (reverse S l2)@(reverse S l1). +#S #l1 elim l1 [normalize // | #a #tl #Hind #l2 >reverse_cons +>reverse_cons // qed. + +lemma reverse_reverse : ∀S,l. reverse S (reverse S l) = l. +#S #l elim l // #a #tl #Hind >reverse_cons >reverse_append +normalize // qed. + +(* an elimination principle for lists working on the tail; +useful for strings *) +lemma list_elim_left: ∀S.∀P:list S → Prop. P (nil S) → +(∀a.∀tl.P tl → P (tl@[a])) → ∀l. P l. +#S #P #Pnil #Pstep #l <(reverse_reverse … l) +generalize in match (reverse S l); #l elim l // +#a #tl #H >reverse_cons @Pstep // +qed. (**************************** length ******************************) @@ -134,14 +193,231 @@ let rec length (A:Type[0]) (l:list A) on l ≝ [ nil ⇒ 0 | cons a tl ⇒ S (length A tl)]. -notation "|M|" non associative with precedence 60 for @{'norm $M}. -interpretation "norm" 'norm l = (length ? l). +interpretation "list length" 'card l = (length ? l). + +lemma length_tail: ∀A,l. length ? (tail A l) = pred (length ? l). +#A #l elim l // +qed. lemma length_append: ∀A.∀l1,l2:list A. |l1@l2| = |l1|+|l2|. #A #l1 elim l1 // normalize /2/ qed. +lemma length_map: ∀A,B,l.∀f:A→B. length ? (map ?? f l) = length ? l. +#A #B #l #f elim l // #a #tl #Hind normalize // +qed. + +lemma length_reverse: ∀A.∀l:list A. + |reverse A l| = |l|. +#A #l elim l // #a #l0 #IH >reverse_cons >length_append normalize // +qed. + +lemma lenght_to_nil: ∀A.∀l:list A. + |l| = 0 → l = [ ]. +#A * // #a #tl normalize #H destruct +qed. + +(****************** traversing two lists in parallel *****************) +lemma list_ind2 : + ∀T1,T2:Type[0].∀l1:list T1.∀l2:list T2.∀P:list T1 → list T2 → Prop. + length ? l1 = length ? l2 → + (P [] []) → + (∀tl1,tl2,hd1,hd2. P tl1 tl2 → P (hd1::tl1) (hd2::tl2)) → + P l1 l2. +#T1 #T2 #l1 #l2 #P #Hl #Pnil #Pcons +generalize in match Hl; generalize in match l2; +elim l1 +[#l2 cases l2 // normalize #t2 #tl2 #H destruct +|#t1 #tl1 #IH #l2 cases l2 + [normalize #H destruct + |#t2 #tl2 #H @Pcons @IH normalize in H; destruct // ] +] +qed. + +lemma list_cases2 : + ∀T1,T2:Type[0].∀l1:list T1.∀l2:list T2.∀P:Prop. + length ? l1 = length ? l2 → + (l1 = [] → l2 = [] → P) → + (∀hd1,hd2,tl1,tl2.l1 = hd1::tl1 → l2 = hd2::tl2 → P) → P. +#T1 #T2 #l1 #l2 #P #Hl @(list_ind2 … Hl) +[ #Pnil #Pcons @Pnil // +| #tl1 #tl2 #hd1 #hd2 #IH1 #IH2 #Hp @Hp // ] +qed. + +(*********************** properties of append ***********************) +lemma append_l1_injective : + ∀A.∀l1,l2,l3,l4:list A. |l1| = |l2| → l1@l3 = l2@l4 → l1 = l2. +#a #l1 #l2 #l3 #l4 #Hlen @(list_ind2 … Hlen) // +#tl1 #tl2 #hd1 #hd2 #IH normalize #Heq destruct @eq_f /2/ +qed. + +lemma append_l2_injective : + ∀A.∀l1,l2,l3,l4:list A. |l1| = |l2| → l1@l3 = l2@l4 → l3 = l4. +#a #l1 #l2 #l3 #l4 #Hlen @(list_ind2 … Hlen) normalize // +#tl1 #tl2 #hd1 #hd2 #IH normalize #Heq destruct /2/ +qed. + +lemma append_l1_injective_r : + ∀A.∀l1,l2,l3,l4:list A. |l3| = |l4| → l1@l3 = l2@l4 → l1 = l2. +#a #l1 #l2 #l3 #l4 #Hlen #Heq lapply (eq_f … (reverse ?) … Heq) +>reverse_append >reverse_append #Heq1 +lapply (append_l2_injective … Heq1) [ // ] #Heq2 +lapply (eq_f … (reverse ?) … Heq2) // +qed. + +lemma append_l2_injective_r : + ∀A.∀l1,l2,l3,l4:list A. |l3| = |l4| → l1@l3 = l2@l4 → l3 = l4. +#a #l1 #l2 #l3 #l4 #Hlen #Heq lapply (eq_f … (reverse ?) … Heq) +>reverse_append >reverse_append #Heq1 +lapply (append_l1_injective … Heq1) [ // ] #Heq2 +lapply (eq_f … (reverse ?) … Heq2) // +qed. + +lemma length_rev_append: ∀A.∀l,acc:list A. + |rev_append ? l acc| = |l|+|acc|. +#A #l elim l // #a #tl #Hind normalize +#acc >Hind normalize // +qed. + +(****************************** mem ********************************) +let rec mem A (a:A) (l:list A) on l ≝ + match l with + [ nil ⇒ False + | cons hd tl ⇒ a=hd ∨ mem A a tl + ]. + +lemma mem_append: ∀A,a,l1,l2.mem A a (l1@l2) → + mem ? a l1 ∨ mem ? a l2. +#A #a #l1 elim l1 + [#l2 #mema %2 @mema + |#b #tl #Hind #l2 * + [#eqab %1 %1 @eqab + |#Hmema cases (Hind ? Hmema) -Hmema #Hmema [%1 %2 //|%2 //] + ] + ] +qed. + +lemma mem_append_l1: ∀A,a,l1,l2.mem A a l1 → mem A a (l1@l2). +#A #a #l1 #l2 elim l1 + [whd in ⊢ (%→?); @False_ind + |#b #tl #Hind * [#eqab %1 @eqab |#Hmema %2 @Hind //] + ] +qed. + +lemma mem_append_l2: ∀A,a,l1,l2.mem A a l2 → mem A a (l1@l2). +#A #a #l1 #l2 elim l1 [//|#b #tl #Hind #Hmema %2 @Hind //] +qed. + +lemma mem_single: ∀A,a,b. mem A a [b] → a=b. +#A #a #b * // @False_ind +qed. + +lemma mem_map: ∀A,B.∀f:A→B.∀l,b. + mem ? b (map … f l) → ∃a. mem ? a l ∧ f a = b. +#A #B #f #l elim l + [#b normalize @False_ind + |#a #tl #Hind #b normalize * + [#eqb @(ex_intro … a) /3/ + |#memb cases (Hind … memb) #a * #mema #eqb + @(ex_intro … a) /3/ + ] + ] +qed. + +lemma mem_map_forward: ∀A,B.∀f:A→B.∀a,l. + mem A a l → mem B (f a) (map ?? f l). + #A #B #f #a #l elim l + [normalize @False_ind + |#b #tl #Hind * + [#eqab Hind + [normalize // |@le_S_S_to_le //] + ] +qed. + +lemma split_len: ∀A,n,l. n ≤ |l| → + |\fst (split A l n)| = n. +#A #n #l #Hlen normalize >(eq_pair_fst_snd ?? (split_rev …)) +normalize >length_reverse >(split_rev_len … [ ] Hlen) normalize // +qed. + +lemma split_rev_eq: ∀A,n,l,acc. n ≤ |l| → + reverse ? acc@ l = + reverse ? (\fst (split_rev A l acc n))@(\snd (split_rev A l acc n)). + #A #n elim n // + #m #Hind * + [#acc whd in ⊢ ((??%)→?); #False_ind /2/ + |#a #tl #acc #Hlen >append_cons (split_rev_eq … Hlen) normalize +>(eq_pair_fst_snd ?? (split_rev A l [] n)) % +qed. + +lemma split_exists: ∀A,n.∀l:list A. n ≤ |l| → + ∃l1,l2. l = l1@l2 ∧ |l1| = n. +#A #n #l #Hlen @(ex_intro … (\fst (split A l n))) +@(ex_intro … (\snd (split A l n))) % /2/ +qed. + +(****************************** flatten ******************************) +definition flatten ≝ λA.foldr (list A) (list A) (append A) []. + +lemma flatten_to_mem: ∀A,n,l,l1,l2.∀a:list A. 0 < n → + (∀x. mem ? x l → |x| = n) → |a| = n → flatten ? l = l1@a@l2 → + (∃q.|l1| = n*q) → mem ? a l. +#A #n #l elim l + [normalize #l1 #l2 #a #posn #Hlen #Ha #Hnil @False_ind + cut (|a|=0) [@sym_eq @le_n_O_to_eq + @(transitive_le ? (|nil A|)) // >Hnil >length_append >length_append //] /2/ + |#hd #tl #Hind #l1 #l2 #a #posn #Hlen #Ha + whd in match (flatten ??); #Hflat * #q cases q + [(lenght_to_nil… Hl1) in Hflat; + whd in ⊢ ((???%)→?); #Hflat @sym_eq @(append_l1_injective … Hflat) + >Ha >Hlen // %1 // + ] /2/ + |#q1 #Hl1 lapply (split_exists … n l1 ?) // + * #l11 * #l12 * #Heql1 #Hlenl11 %2 + @(Hind l12 l2 … posn ? Ha) + [#x #memx @Hlen %2 // + |@(append_l2_injective ? hd l11) + [>Hlenl11 @Hlen %1 % + |>Hflat >Heql1 >associative_append % + ] + |@(ex_intro …q1) @(injective_plus_r n) + Hl1 // + ] + ] + ] +qed. + (****************************** nth ********************************) let rec nth n (A:Type[0]) (l:list A) (d:A) ≝ match n with @@ -187,6 +463,33 @@ lemma All_nth : ∀A,P,n,l. ] ] qed. +lemma All_append: ∀A,P,l1,l2. All A P l1 → All A P l2 → All A P (l1@l2). +#A #P #l1 elim l1 -l1 // +#a #l1 #IHl1 #l2 * /3 width=1/ +qed. + +lemma All_inv_append: ∀A,P,l1,l2. All A P (l1@l2) → All A P l1 ∧ All A P l2. +#A #P #l1 elim l1 -l1 /2 width=1/ +#a #l1 #IHl1 #l2 * #Ha #Hl12 +elim (IHl1 … Hl12) -IHl1 -Hl12 /3 width=1/ +qed-. + +(**************************** Allr ******************************) + +let rec Allr (A:Type[0]) (R:relation A) (l:list A) on l : Prop ≝ +match l with +[ nil ⇒ True +| cons a1 l ⇒ match l with [ nil ⇒ True | cons a2 _ ⇒ R a1 a2 ∧ Allr A R l ] +]. + +lemma Allr_fwd_append_sn: ∀A,R,l1,l2. Allr A R (l1@l2) → Allr A R l1. +#A #R #l1 elim l1 -l1 // #a1 * // #a2 #l1 #IHl1 #l2 * /3 width=2/ +qed-. + +lemma Allr_fwd_cons: ∀A,R,a,l. Allr A R (a::l) → Allr A R l. +#A #R #a * // #a0 #l * // +qed-. + (**************************** Exists *******************************) let rec Exists (A:Type[0]) (P:A → Prop) (l:list A) on l : Prop ≝ @@ -329,7 +632,7 @@ lemma lhd_cons_ltl: ∀A,n,l. lhd A l n @ ltl A l n = l. qed. lemma length_ltl: ∀A,n,l. |ltl A l n| = |l| - n. -#A #n elim n -n /2/ +#A #n elim n -n // #n #IHn *; normalize /2/ qed.