X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Flists%2Flist.ma;h=a20a891089cb795ae88cdbe823a18d9a90096ebe;hb=b0d97cd7e2c50fb1fc2d50c86f3140e226b08a81;hp=40839b28fcf26fcf3abfe016fcb9b873a9ce19a1;hpb=596896aaf7158f90a96c3220e4a8f0a420f593d6;p=helm.git diff --git a/matita/matita/lib/basics/lists/list.ma b/matita/matita/lib/basics/lists/list.ma index 40839b28f..a20a89108 100644 --- a/matita/matita/lib/basics/lists/list.ma +++ b/matita/matita/lib/basics/lists/list.ma @@ -31,12 +31,12 @@ notation "hvbox(l1 break @ l2)" interpretation "nil" 'nil = (nil ?). interpretation "cons" 'cons hd tl = (cons ? hd tl). -definition not_nil: ∀A:Type[0].list A → Prop ≝ +definition is_nil: ∀A:Type[0].list A → Prop ≝ λA.λl.match l with [ nil ⇒ True | cons hd tl ⇒ False ]. theorem nil_cons: ∀A:Type[0].∀l:list A.∀a:A. a::l ≠ []. - #A #l #a @nmk #Heq (change with (not_nil ? (a::l))) >Heq // + #A #l #a @nmk #Heq (change with (is_nil ? (a::l))) >Heq // qed. (* @@ -55,6 +55,11 @@ definition hd ≝ λA.λl: list A.λd:A. definition tail ≝ λA.λl: list A. match l with [ nil ⇒ [] | cons hd tl ⇒ tl]. + +definition option_hd ≝ + λA.λl:list A. match l with + [ nil ⇒ None ? + | cons a _ ⇒ Some ? a ]. interpretation "append" 'append l1 l2 = (append ? l1 l2). @@ -65,12 +70,6 @@ theorem associative_append: ∀A.associative (list A) (append A). #A #l1 #l2 #l3 (elim l1) normalize // qed. -(* deleterio per auto -ntheorem cons_append_commute: - ∀A:Type.∀l1,l2:list A.∀a:A. - a :: (l1 @ l2) = (a :: l1) @ l2. -//; nqed. *) - theorem append_cons:∀A.∀a:A.∀l,l1.l@(a::l1)=(l@[a])@l1. #A #a #l #l1 >associative_append // qed. @@ -85,6 +84,14 @@ theorem nil_to_nil: ∀A.∀l1,l2:list A. #A #l1 #l2 #isnil @(nil_append_elim A l1 l2) /2/ qed. +lemma cons_injective_l : ∀A.∀a1,a2:A.∀l1,l2.a1::l1 = a2::l2 → a1 = a2. +#A #a1 #a2 #l1 #l2 #Heq destruct // +qed. + +lemma cons_injective_r : ∀A.∀a1,a2:A.∀l1,l2.a1::l1 = a2::l2 → l1 = l2. +#A #a1 #a2 #l1 #l2 #Heq destruct // +qed. + (**************************** iterators ******************************) let rec map (A,B:Type[0]) (f: A → B) (l:list A) on l: list B ≝ @@ -121,6 +128,46 @@ lemma filter_false : ∀A,l,a,p. p a = false → theorem eq_map : ∀A,B,f,g,l. (∀x.f x = g x) → map A B f l = map A B g l. #A #B #f #g #l #eqfg (elim l) normalize // qed. +(**************************** reverse *****************************) +let rec rev_append S (l1,l2:list S) on l1 ≝ + match l1 with + [ nil ⇒ l2 + | cons a tl ⇒ rev_append S tl (a::l2) + ] +. + +definition reverse ≝λS.λl.rev_append S l []. + +lemma reverse_single : ∀S,a. reverse S [a] = [a]. +// qed. + +lemma rev_append_def : ∀S,l1,l2. + rev_append S l1 l2 = (reverse S l1) @ l2 . +#S #l1 elim l1 normalize // +qed. + +lemma reverse_cons : ∀S,a,l. reverse S (a::l) = (reverse S l)@[a]. +#S #a #l whd in ⊢ (??%?); // +qed. + +lemma reverse_append: ∀S,l1,l2. + reverse S (l1 @ l2) = (reverse S l2)@(reverse S l1). +#S #l1 elim l1 [normalize // | #a #tl #Hind #l2 >reverse_cons +>reverse_cons // qed. + +lemma reverse_reverse : ∀S,l. reverse S (reverse S l) = l. +#S #l elim l // #a #tl #Hind >reverse_cons >reverse_append +normalize // qed. + +(* an elimination principle for lists working on the tail; +useful for strings *) +lemma list_elim_left: ∀S.∀P:list S → Prop. P (nil S) → +(∀a.∀tl.P tl → P (tl@[a])) → ∀l. P l. +#S #P #Pnil #Pstep #l <(reverse_reverse … l) +generalize in match (reverse S l); #l elim l // +#a #tl #H >reverse_cons @Pstep // +qed. + (**************************** length ******************************) let rec length (A:Type[0]) (l:list A) on l ≝ @@ -128,14 +175,148 @@ let rec length (A:Type[0]) (l:list A) on l ≝ [ nil ⇒ 0 | cons a tl ⇒ S (length A tl)]. -notation "|M|" non associative with precedence 60 for @{'norm $M}. +notation "|M|" non associative with precedence 65 for @{'norm $M}. interpretation "norm" 'norm l = (length ? l). +lemma length_tail: ∀A,l. length ? (tail A l) = pred (length ? l). +#A #l elim l // +qed. + lemma length_append: ∀A.∀l1,l2:list A. |l1@l2| = |l1|+|l2|. #A #l1 elim l1 // normalize /2/ qed. +lemma length_map: ∀A,B,l.∀f:A→B. length ? (map ?? f l) = length ? l. +#A #B #l #f elim l // #a #tl #Hind normalize // +qed. + +lemma length_reverse: ∀A.∀l:list A. + |reverse A l| = |l|. +#A #l elim l // #a #l0 #IH >reverse_cons >length_append normalize // +qed. + +(****************** traversing two lists in parallel *****************) +lemma list_ind2 : + ∀T1,T2:Type[0].∀l1:list T1.∀l2:list T2.∀P:list T1 → list T2 → Prop. + length ? l1 = length ? l2 → + (P [] []) → + (∀tl1,tl2,hd1,hd2. P tl1 tl2 → P (hd1::tl1) (hd2::tl2)) → + P l1 l2. +#T1 #T2 #l1 #l2 #P #Hl #Pnil #Pcons +generalize in match Hl; generalize in match l2; +elim l1 +[#l2 cases l2 // normalize #t2 #tl2 #H destruct +|#t1 #tl1 #IH #l2 cases l2 + [normalize #H destruct + |#t2 #tl2 #H @Pcons @IH normalize in H; destruct // ] +] +qed. + +lemma list_cases2 : + ∀T1,T2:Type[0].∀l1:list T1.∀l2:list T2.∀P:Prop. + length ? l1 = length ? l2 → + (l1 = [] → l2 = [] → P) → + (∀hd1,hd2,tl1,tl2.l1 = hd1::tl1 → l2 = hd2::tl2 → P) → P. +#T1 #T2 #l1 #l2 #P #Hl @(list_ind2 … Hl) +[ #Pnil #Pcons @Pnil // +| #tl1 #tl2 #hd1 #hd2 #IH1 #IH2 #Hp @Hp // ] +qed. + +(*********************** properties of append ***********************) +lemma append_l1_injective : + ∀A.∀l1,l2,l3,l4:list A. |l1| = |l2| → l1@l3 = l2@l4 → l1 = l2. +#a #l1 #l2 #l3 #l4 #Hlen @(list_ind2 … Hlen) // +#tl1 #tl2 #hd1 #hd2 #IH normalize #Heq destruct @eq_f /2/ +qed. + +lemma append_l2_injective : + ∀A.∀l1,l2,l3,l4:list A. |l1| = |l2| → l1@l3 = l2@l4 → l3 = l4. +#a #l1 #l2 #l3 #l4 #Hlen @(list_ind2 … Hlen) normalize // +#tl1 #tl2 #hd1 #hd2 #IH normalize #Heq destruct /2/ +qed. + +lemma append_l1_injective_r : + ∀A.∀l1,l2,l3,l4:list A. |l3| = |l4| → l1@l3 = l2@l4 → l1 = l2. +#a #l1 #l2 #l3 #l4 #Hlen #Heq lapply (eq_f … (reverse ?) … Heq) +>reverse_append >reverse_append #Heq1 +lapply (append_l2_injective … Heq1) [ // ] #Heq2 +lapply (eq_f … (reverse ?) … Heq2) // +qed. + +lemma append_l2_injective_r : + ∀A.∀l1,l2,l3,l4:list A. |l3| = |l4| → l1@l3 = l2@l4 → l3 = l4. +#a #l1 #l2 #l3 #l4 #Hlen #Heq lapply (eq_f … (reverse ?) … Heq) +>reverse_append >reverse_append #Heq1 +lapply (append_l1_injective … Heq1) [ // ] #Heq2 +lapply (eq_f … (reverse ?) … Heq2) // +qed. + +lemma length_rev_append: ∀A.∀l,acc:list A. + |rev_append ? l acc| = |l|+|acc|. +#A #l elim l // #a #tl #Hind normalize +#acc >Hind normalize // +qed. + +(****************************** mem ********************************) +let rec mem A (a:A) (l:list A) on l ≝ + match l with + [ nil ⇒ False + | cons hd tl ⇒ a=hd ∨ mem A a tl + ]. + +(***************************** split *******************************) +let rec split_rev A (l:list A) acc n on n ≝ + match n with + [O ⇒ 〈acc,l〉 + |S m ⇒ match l with + [nil ⇒ 〈acc,[]〉 + |cons a tl ⇒ split_rev A tl (a::acc) m + ] + ]. + +definition split ≝ λA,l,n. + let 〈l1,l2〉 ≝ split_rev A l [] n in 〈reverse ? l1,l2〉. + +lemma split_rev_len: ∀A,n,l,acc. n ≤ |l| → + |\fst (split_rev A l acc n)| = n+|acc|. +#A #n elim n // #m #Hind * + [normalize #acc #Hfalse @False_ind /2/ + |#a #tl #acc #Hlen normalize >Hind + [normalize // |@le_S_S_to_le //] + ] +qed. + +lemma split_len: ∀A,n,l. n ≤ |l| → + |\fst (split A l n)| = n. +#A #n #l #Hlen normalize >(eq_pair_fst_snd ?? (split_rev …)) +normalize >length_reverse >(split_rev_len … [ ] Hlen) normalize // +qed. + +lemma split_rev_eq: ∀A,n,l,acc. n ≤ |l| → + reverse ? acc@ l = + reverse ? (\fst (split_rev A l acc n))@(\snd (split_rev A l acc n)). + #A #n elim n // + #m #Hind * + [#acc whd in ⊢ ((??%)→?); #False_ind /2/ + |#a #tl #acc #Hlen >append_cons (split_rev_eq … Hlen) normalize +>(eq_pair_fst_snd ?? (split_rev A l [] n)) % +qed. + +lemma split_exists: ∀A,n.∀l:list A. n ≤ |l| → + ∃l1,l2. l = l1@l2 ∧ |l1| = n. +#A #n #l #Hlen @(ex_intro … (\fst (split A l n))) +@(ex_intro … (\snd (split A l n))) % /2/ +qed. + (****************************** nth ********************************) let rec nth n (A:Type[0]) (l:list A) (d:A) ≝ match n with @@ -323,7 +504,7 @@ lemma lhd_cons_ltl: ∀A,n,l. lhd A l n @ ltl A l n = l. qed. lemma length_ltl: ∀A,n,l. |ltl A l n| = |l| - n. -#A #n elim n -n /2/ +#A #n elim n -n // #n #IHn *; normalize /2/ qed.