X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Flists%2Flist.ma;h=a330f6224ef1fdb6c94e356b71955f9bad0129e5;hb=85a42e4a2a4c62818b6a98eff545e58ceb8770a4;hp=fa9e8bfee3c32290ccf54dcef5f7faca56a53c5b;hpb=7d6ce585b85cd390b7888a8debfeb1b8aaf93f72;p=helm.git diff --git a/matita/matita/lib/basics/lists/list.ma b/matita/matita/lib/basics/lists/list.ma index fa9e8bfee..a330f6224 100644 --- a/matita/matita/lib/basics/lists/list.ma +++ b/matita/matita/lib/basics/lists/list.ma @@ -31,12 +31,12 @@ notation "hvbox(l1 break @ l2)" interpretation "nil" 'nil = (nil ?). interpretation "cons" 'cons hd tl = (cons ? hd tl). -definition not_nil: ∀A:Type[0].list A → Prop ≝ +definition is_nil: ∀A:Type[0].list A → Prop ≝ λA.λl.match l with [ nil ⇒ True | cons hd tl ⇒ False ]. theorem nil_cons: ∀A:Type[0].∀l:list A.∀a:A. a::l ≠ []. - #A #l #a @nmk #Heq (change with (not_nil ? (a::l))) >Heq // + #A #l #a @nmk #Heq (change with (is_nil ? (a::l))) >Heq // qed. (* @@ -55,6 +55,11 @@ definition hd ≝ λA.λl: list A.λd:A. definition tail ≝ λA.λl: list A. match l with [ nil ⇒ [] | cons hd tl ⇒ tl]. + +definition option_hd ≝ + λA.λl:list A. match l with + [ nil ⇒ None ? + | cons a _ ⇒ Some ? a ]. interpretation "append" 'append l1 l2 = (append ? l1 l2). @@ -65,12 +70,6 @@ theorem associative_append: ∀A.associative (list A) (append A). #A #l1 #l2 #l3 (elim l1) normalize // qed. -(* deleterio per auto -ntheorem cons_append_commute: - ∀A:Type.∀l1,l2:list A.∀a:A. - a :: (l1 @ l2) = (a :: l1) @ l2. -//; nqed. *) - theorem append_cons:∀A.∀a:A.∀l,l1.l@(a::l1)=(l@[a])@l1. #A #a #l #l1 >associative_append // qed. @@ -85,10 +84,25 @@ theorem nil_to_nil: ∀A.∀l1,l2:list A. #A #l1 #l2 #isnil @(nil_append_elim A l1 l2) /2/ qed. -(* iterators *) +lemma cons_injective_l : ∀A.∀a1,a2:A.∀l1,l2.a1::l1 = a2::l2 → a1 = a2. +#A #a1 #a2 #l1 #l2 #Heq destruct // +qed. + +lemma cons_injective_r : ∀A.∀a1,a2:A.∀l1,l2.a1::l1 = a2::l2 → l1 = l2. +#A #a1 #a2 #l1 #l2 #Heq destruct // +qed. + +(**************************** iterators ******************************) let rec map (A,B:Type[0]) (f: A → B) (l:list A) on l: list B ≝ match l with [ nil ⇒ nil ? | cons x tl ⇒ f x :: (map A B f tl)]. + +lemma map_append : ∀A,B,f,l1,l2. + (map A B f l1) @ (map A B f l2) = map A B f (l1@l2). +#A #B #f #l1 elim l1 +[ #l2 @refl +| #h #t #IH #l2 normalize // +] qed. let rec foldr (A,B:Type[0]) (f:A → B → B) (b:B) (l:list A) on l :B ≝ match l with [ nil ⇒ b | cons a l ⇒ f a (foldr A B f b l)]. @@ -114,11 +128,45 @@ lemma filter_false : ∀A,l,a,p. p a = false → theorem eq_map : ∀A,B,f,g,l. (∀x.f x = g x) → map A B f l = map A B g l. #A #B #f #g #l #eqfg (elim l) normalize // qed. -let rec dprodl (A:Type[0]) (f:A→Type[0]) (l1:list A) (g:(∀a:A.list (f a))) on l1 ≝ -match l1 with - [ nil ⇒ nil ? - | cons a tl ⇒ (map ??(mk_Sig ?? a) (g a)) @ dprodl A f tl g - ]. +(**************************** reverse *****************************) +let rec rev_append S (l1,l2:list S) on l1 ≝ + match l1 with + [ nil ⇒ l2 + | cons a tl ⇒ rev_append S tl (a::l2) + ] +. + +definition reverse ≝λS.λl.rev_append S l []. + +lemma reverse_single : ∀S,a. reverse S [a] = [a]. +// qed. + +lemma rev_append_def : ∀S,l1,l2. + rev_append S l1 l2 = (reverse S l1) @ l2 . +#S #l1 elim l1 normalize // +qed. + +lemma reverse_cons : ∀S,a,l. reverse S (a::l) = (reverse S l)@[a]. +#S #a #l whd in ⊢ (??%?); // +qed. + +lemma reverse_append: ∀S,l1,l2. + reverse S (l1 @ l2) = (reverse S l2)@(reverse S l1). +#S #l1 elim l1 [normalize // | #a #tl #Hind #l2 >reverse_cons +>reverse_cons // qed. + +lemma reverse_reverse : ∀S,l. reverse S (reverse S l) = l. +#S #l elim l // #a #tl #Hind >reverse_cons >reverse_append +normalize // qed. + +(* an elimination principle for lists working on the tail; +useful for strings *) +lemma list_elim_left: ∀S.∀P:list S → Prop. P (nil S) → +(∀a.∀tl.P tl → P (tl@[a])) → ∀l. P l. +#S #P #Pnil #Pstep #l <(reverse_reverse … l) +generalize in match (reverse S l); #l elim l // +#a #tl #H >reverse_cons @Pstep // +qed. (**************************** length ******************************) @@ -127,14 +175,206 @@ let rec length (A:Type[0]) (l:list A) on l ≝ [ nil ⇒ 0 | cons a tl ⇒ S (length A tl)]. -notation "|M|" non associative with precedence 60 for @{'norm $M}. +notation "|M|" non associative with precedence 65 for @{'norm $M}. interpretation "norm" 'norm l = (length ? l). +lemma length_tail: ∀A,l. length ? (tail A l) = pred (length ? l). +#A #l elim l // +qed. + lemma length_append: ∀A.∀l1,l2:list A. |l1@l2| = |l1|+|l2|. #A #l1 elim l1 // normalize /2/ qed. +lemma length_map: ∀A,B,l.∀f:A→B. length ? (map ?? f l) = length ? l. +#A #B #l #f elim l // #a #tl #Hind normalize // +qed. + +lemma length_reverse: ∀A.∀l:list A. + |reverse A l| = |l|. +#A #l elim l // #a #l0 #IH >reverse_cons >length_append normalize // +qed. + +lemma lenght_to_nil: ∀A.∀l:list A. + |l| = 0 → l = [ ]. +#A * // #a #tl normalize #H destruct +qed. + +(****************** traversing two lists in parallel *****************) +lemma list_ind2 : + ∀T1,T2:Type[0].∀l1:list T1.∀l2:list T2.∀P:list T1 → list T2 → Prop. + length ? l1 = length ? l2 → + (P [] []) → + (∀tl1,tl2,hd1,hd2. P tl1 tl2 → P (hd1::tl1) (hd2::tl2)) → + P l1 l2. +#T1 #T2 #l1 #l2 #P #Hl #Pnil #Pcons +generalize in match Hl; generalize in match l2; +elim l1 +[#l2 cases l2 // normalize #t2 #tl2 #H destruct +|#t1 #tl1 #IH #l2 cases l2 + [normalize #H destruct + |#t2 #tl2 #H @Pcons @IH normalize in H; destruct // ] +] +qed. + +lemma list_cases2 : + ∀T1,T2:Type[0].∀l1:list T1.∀l2:list T2.∀P:Prop. + length ? l1 = length ? l2 → + (l1 = [] → l2 = [] → P) → + (∀hd1,hd2,tl1,tl2.l1 = hd1::tl1 → l2 = hd2::tl2 → P) → P. +#T1 #T2 #l1 #l2 #P #Hl @(list_ind2 … Hl) +[ #Pnil #Pcons @Pnil // +| #tl1 #tl2 #hd1 #hd2 #IH1 #IH2 #Hp @Hp // ] +qed. + +(*********************** properties of append ***********************) +lemma append_l1_injective : + ∀A.∀l1,l2,l3,l4:list A. |l1| = |l2| → l1@l3 = l2@l4 → l1 = l2. +#a #l1 #l2 #l3 #l4 #Hlen @(list_ind2 … Hlen) // +#tl1 #tl2 #hd1 #hd2 #IH normalize #Heq destruct @eq_f /2/ +qed. + +lemma append_l2_injective : + ∀A.∀l1,l2,l3,l4:list A. |l1| = |l2| → l1@l3 = l2@l4 → l3 = l4. +#a #l1 #l2 #l3 #l4 #Hlen @(list_ind2 … Hlen) normalize // +#tl1 #tl2 #hd1 #hd2 #IH normalize #Heq destruct /2/ +qed. + +lemma append_l1_injective_r : + ∀A.∀l1,l2,l3,l4:list A. |l3| = |l4| → l1@l3 = l2@l4 → l1 = l2. +#a #l1 #l2 #l3 #l4 #Hlen #Heq lapply (eq_f … (reverse ?) … Heq) +>reverse_append >reverse_append #Heq1 +lapply (append_l2_injective … Heq1) [ // ] #Heq2 +lapply (eq_f … (reverse ?) … Heq2) // +qed. + +lemma append_l2_injective_r : + ∀A.∀l1,l2,l3,l4:list A. |l3| = |l4| → l1@l3 = l2@l4 → l3 = l4. +#a #l1 #l2 #l3 #l4 #Hlen #Heq lapply (eq_f … (reverse ?) … Heq) +>reverse_append >reverse_append #Heq1 +lapply (append_l1_injective … Heq1) [ // ] #Heq2 +lapply (eq_f … (reverse ?) … Heq2) // +qed. + +lemma length_rev_append: ∀A.∀l,acc:list A. + |rev_append ? l acc| = |l|+|acc|. +#A #l elim l // #a #tl #Hind normalize +#acc >Hind normalize // +qed. + +(****************************** mem ********************************) +let rec mem A (a:A) (l:list A) on l ≝ + match l with + [ nil ⇒ False + | cons hd tl ⇒ a=hd ∨ mem A a tl + ]. + +lemma mem_map: ∀A,B.∀f:A→B.∀l,b. + mem ? b (map … f l) → ∃a. mem ? a l ∧ f a = b. +#A #B #f #l elim l + [#b normalize @False_ind + |#a #tl #Hind #b normalize * + [#eqb @(ex_intro … a) /3/ + |#memb cases (Hind … memb) #a * #mema #eqb + @(ex_intro … a) /3/ + ] + ] +qed. + +lemma mem_map_forward: ∀A,B.∀f:A→B.∀a,l. + mem A a l → mem B (f a) (map ?? f l). + #A #B #f #a #l elim l + [normalize @False_ind + |#b #tl #Hind * + [#eqab Hind + [normalize // |@le_S_S_to_le //] + ] +qed. + +lemma split_len: ∀A,n,l. n ≤ |l| → + |\fst (split A l n)| = n. +#A #n #l #Hlen normalize >(eq_pair_fst_snd ?? (split_rev …)) +normalize >length_reverse >(split_rev_len … [ ] Hlen) normalize // +qed. + +lemma split_rev_eq: ∀A,n,l,acc. n ≤ |l| → + reverse ? acc@ l = + reverse ? (\fst (split_rev A l acc n))@(\snd (split_rev A l acc n)). + #A #n elim n // + #m #Hind * + [#acc whd in ⊢ ((??%)→?); #False_ind /2/ + |#a #tl #acc #Hlen >append_cons (split_rev_eq … Hlen) normalize +>(eq_pair_fst_snd ?? (split_rev A l [] n)) % +qed. + +lemma split_exists: ∀A,n.∀l:list A. n ≤ |l| → + ∃l1,l2. l = l1@l2 ∧ |l1| = n. +#A #n #l #Hlen @(ex_intro … (\fst (split A l n))) +@(ex_intro … (\snd (split A l n))) % /2/ +qed. + +(****************************** flatten ******************************) +definition flatten ≝ λA.foldr (list A) (list A) (append A) []. + +lemma flatten_to_mem: ∀A,n,l,l1,l2.∀a:list A. 0 < n → + (∀x. mem ? x l → |x| = n) → |a| = n → flatten ? l = l1@a@l2 → + (∃q.|l1| = n*q) → mem ? a l. +#A #n #l elim l + [normalize #l1 #l2 #a #posn #Hlen #Ha #Hnil @False_ind + cut (|a|=0) [@sym_eq @le_n_O_to_eq + @(transitive_le ? (|nil A|)) // >Hnil >length_append >length_append //] /2/ + |#hd #tl #Hind #l1 #l2 #a #posn #Hlen #Ha + whd in match (flatten ??); #Hflat * #q cases q + [(lenght_to_nil… Hl1) in Hflat; + whd in ⊢ ((???%)→?); #Hflat @sym_eq @(append_l1_injective … Hflat) + >Ha >Hlen // %1 // + ] /2/ + |#q1 #Hl1 lapply (split_exists … n l1 ?) // + * #l11 * #l12 * #Heql1 #Hlenl11 %2 + @(Hind l12 l2 … posn ? Ha) + [#x #memx @Hlen %2 // + |@(append_l2_injective ? hd l11) + [>Hlenl11 @Hlen %1 % + |>Hflat >Heql1 >associative_append % + ] + |@(ex_intro …q1) @(injective_plus_r n) + Hl1 // + ] + ] + ] +qed. + (****************************** nth ********************************) let rec nth n (A:Type[0]) (l:list A) (d:A) ≝ match n with @@ -145,6 +385,102 @@ lemma nth_nil: ∀A,a,i. nth i A ([]) a = a. #A #a #i elim i normalize // qed. +(****************************** nth_opt ********************************) +let rec nth_opt (A:Type[0]) (n:nat) (l:list A) on l : option A ≝ +match l with +[ nil ⇒ None ? +| cons h t ⇒ match n with [ O ⇒ Some ? h | S m ⇒ nth_opt A m t ] +]. + +(**************************** All *******************************) + +let rec All (A:Type[0]) (P:A → Prop) (l:list A) on l : Prop ≝ +match l with +[ nil ⇒ True +| cons h t ⇒ P h ∧ All A P t +]. + +lemma All_mp : ∀A,P,Q. (∀a.P a → Q a) → ∀l. All A P l → All A Q l. +#A #P #Q #H #l elim l normalize // +#h #t #IH * /3/ +qed. + +lemma All_nth : ∀A,P,n,l. + All A P l → + ∀a. + nth_opt A n l = Some A a → + P a. +#A #P #n elim n +[ * [ #_ #a #E whd in E:(??%?); destruct + | #hd #tl * #H #_ #a #E whd in E:(??%?); destruct @H + ] +| #m #IH * + [ #_ #a #E whd in E:(??%?); destruct + | #hd #tl * #_ whd in ⊢ (? → ∀_.??%? → ?); @IH + ] +] qed. + +(**************************** Exists *******************************) + +let rec Exists (A:Type[0]) (P:A → Prop) (l:list A) on l : Prop ≝ +match l with +[ nil ⇒ False +| cons h t ⇒ (P h) ∨ (Exists A P t) +]. + +lemma Exists_append : ∀A,P,l1,l2. + Exists A P (l1 @ l2) → Exists A P l1 ∨ Exists A P l2. +#A #P #l1 elim l1 +[ normalize /2/ +| #h #t #IH #l2 * + [ #H /3/ + | #H cases (IH l2 H) /3/ + ] +] qed. + +lemma Exists_append_l : ∀A,P,l1,l2. + Exists A P l1 → Exists A P (l1@l2). +#A #P #l1 #l2 elim l1 +[ * +| #h #t #IH * + [ #H %1 @H + | #H %2 @IH @H + ] +] qed. + +lemma Exists_append_r : ∀A,P,l1,l2. + Exists A P l2 → Exists A P (l1@l2). +#A #P #l1 #l2 elim l1 +[ #H @H +| #h #t #IH #H %2 @IH @H +] qed. + +lemma Exists_add : ∀A,P,l1,x,l2. Exists A P (l1@l2) → Exists A P (l1@x::l2). +#A #P #l1 #x #l2 elim l1 +[ normalize #H %2 @H +| #h #t #IH normalize * [ #H %1 @H | #H %2 @IH @H ] +qed. + +lemma Exists_mid : ∀A,P,l1,x,l2. P x → Exists A P (l1@x::l2). +#A #P #l1 #x #l2 #H elim l1 +[ %1 @H +| #h #t #IH %2 @IH +] qed. + +lemma Exists_map : ∀A,B,P,Q,f,l. +Exists A P l → +(∀a.P a → Q (f a)) → +Exists B Q (map A B f l). +#A #B #P #Q #f #l elim l // +#h #t #IH * [ #H #F %1 @F @H | #H #F %2 @IH [ @H | @F ] ] qed. + +lemma Exists_All : ∀A,P,Q,l. + Exists A P l → + All A Q l → + ∃x. P x ∧ Q x. +#A #P #Q #l elim l [ * | #hd #tl #IH * [ #H1 * #H2 #_ %{hd} /2/ | #H1 * #_ #H2 @IH // ] +qed. + (**************************** fold *******************************) let rec fold (A,B:Type[0]) (op:B → B → B) (b:B) (p:A→bool) (f:A→B) (l:list A) on l :B ≝ @@ -226,6 +562,35 @@ lemma lhd_cons_ltl: ∀A,n,l. lhd A l n @ ltl A l n = l. qed. lemma length_ltl: ∀A,n,l. |ltl A l n| = |l| - n. -#A #n elim n -n /2/ +#A #n elim n -n // #n #IHn *; normalize /2/ qed. + +(********************** find ******************************) +let rec find (A,B:Type[0]) (f:A → option B) (l:list A) on l : option B ≝ +match l with +[ nil ⇒ None B +| cons h t ⇒ + match f h with + [ None ⇒ find A B f t + | Some b ⇒ Some B b + ] +]. + +(********************** position_of ******************************) +let rec position_of_aux (A:Type[0]) (found: A → bool) (l:list A) (acc:nat) on l : option nat ≝ +match l with +[ nil ⇒ None ? +| cons h t ⇒ + match found h with [true ⇒ Some … acc | false ⇒ position_of_aux … found t (S acc)]]. + +definition position_of: ∀A:Type[0]. (A → bool) → list A → option nat ≝ + λA,found,l. position_of_aux A found l 0. + + +(********************** make_list ******************************) +let rec make_list (A:Type[0]) (a:A) (n:nat) on n : list A ≝ +match n with +[ O ⇒ [ ] +| S m ⇒ a::(make_list A a m) +].