X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Flists%2Flist.ma;h=f8c2ac772084c11ba0e0dd273f9676f3ce3d46f5;hb=d9a1ff8259a7882caa0ffd27282838c00a34cab5;hp=a1ffa3995f5f6c21251e8b38c34fe22c1c4b6373;hpb=471aadb252fa56a9d8fe484da01fdcff0d12814c;p=helm.git diff --git a/matita/matita/lib/basics/lists/list.ma b/matita/matita/lib/basics/lists/list.ma index a1ffa3995..f8c2ac772 100644 --- a/matita/matita/lib/basics/lists/list.ma +++ b/matita/matita/lib/basics/lists/list.ma @@ -20,7 +20,7 @@ notation "hvbox(hd break :: tl)" right associative with precedence 47 for @{'cons $hd $tl}. -notation "[ list0 x sep ; ]" +notation "[ list0 term 19 x sep ; ]" non associative with precedence 90 for ${fold right @'nil rec acc @{'cons $x $acc}}. @@ -31,12 +31,12 @@ notation "hvbox(l1 break @ l2)" interpretation "nil" 'nil = (nil ?). interpretation "cons" 'cons hd tl = (cons ? hd tl). -definition not_nil: ∀A:Type[0].list A → Prop ≝ +definition is_nil: ∀A:Type[0].list A → Prop ≝ λA.λl.match l with [ nil ⇒ True | cons hd tl ⇒ False ]. theorem nil_cons: ∀A:Type[0].∀l:list A.∀a:A. a::l ≠ []. - #A #l #a @nmk #Heq (change with (not_nil ? (a::l))) >Heq // + #A #l #a @nmk #Heq (change with (is_nil ? (a::l))) >Heq // qed. (* @@ -55,6 +55,11 @@ definition hd ≝ λA.λl: list A.λd:A. definition tail ≝ λA.λl: list A. match l with [ nil ⇒ [] | cons hd tl ⇒ tl]. + +definition option_hd ≝ + λA.λl:list A. match l with + [ nil ⇒ None ? + | cons a _ ⇒ Some ? a ]. interpretation "append" 'append l1 l2 = (append ? l1 l2). @@ -65,12 +70,6 @@ theorem associative_append: ∀A.associative (list A) (append A). #A #l1 #l2 #l3 (elim l1) normalize // qed. -(* deleterio per auto -ntheorem cons_append_commute: - ∀A:Type.∀l1,l2:list A.∀a:A. - a :: (l1 @ l2) = (a :: l1) @ l2. -//; nqed. *) - theorem append_cons:∀A.∀a:A.∀l,l1.l@(a::l1)=(l@[a])@l1. #A #a #l #l1 >associative_append // qed. @@ -85,17 +84,60 @@ theorem nil_to_nil: ∀A.∀l1,l2:list A. #A #l1 #l2 #isnil @(nil_append_elim A l1 l2) /2/ qed. -(* iterators *) +lemma cons_injective_l : ∀A.∀a1,a2:A.∀l1,l2.a1::l1 = a2::l2 → a1 = a2. +#A #a1 #a2 #l1 #l2 #Heq destruct // +qed. + +lemma cons_injective_r : ∀A.∀a1,a2:A.∀l1,l2.a1::l1 = a2::l2 → l1 = l2. +#A #a1 #a2 #l1 #l2 #Heq destruct // +qed. + +(* option cons *) + +definition option_cons ≝ λsig.λc:option sig.λl. + match c with [ None ⇒ l | Some c0 ⇒ c0::l ]. + +lemma opt_cons_tail_expand : ∀A,l.l = option_cons A (option_hd ? l) (tail ? l). +#A * // +qed. + +(* comparing lists *) + +lemma compare_append : ∀A,l1,l2,l3,l4. l1@l2 = l3@l4 → +∃l:list A.(l1 = l3@l ∧ l4=l@l2) ∨ (l3 = l1@l ∧ l2=l@l4). +#A #l1 elim l1 + [#l2 #l3 #l4 #Heq %{l3} %2 % // @Heq + |#a1 #tl1 #Hind #l2 #l3 cases l3 + [#l4 #Heq %{(a1::tl1)} %1 % // @sym_eq @Heq + |#a3 #tl3 #l4 normalize in ⊢ (%→?); #Heq cases (Hind l2 tl3 l4 ?) + [#l * * #Heq1 #Heq2 %{l} + [%1 % // >Heq1 >(cons_injective_l ????? Heq) // + |%2 % // >Heq1 >(cons_injective_l ????? Heq) // + ] + |@(cons_injective_r ????? Heq) + ] + ] + ] +qed. + +(**************************** iterators ******************************) let rec map (A,B:Type[0]) (f: A → B) (l:list A) on l: list B ≝ match l with [ nil ⇒ nil ? | cons x tl ⇒ f x :: (map A B f tl)]. + +lemma map_append : ∀A,B,f,l1,l2. + (map A B f l1) @ (map A B f l2) = map A B f (l1@l2). +#A #B #f #l1 elim l1 +[ #l2 @refl +| #h #t #IH #l2 normalize // +] qed. let rec foldr (A,B:Type[0]) (f:A → B → B) (b:B) (l:list A) on l :B ≝ match l with [ nil ⇒ b | cons a l ⇒ f a (foldr A B f b l)]. definition filter ≝ λT.λp:T → bool. - foldr T (list T) (λx,l0.if_then_else ? (p x) (x::l0) l0) (nil T). + foldr T (list T) (λx,l0.if p x then x::l0 else l0) (nil T). (* compose f [a1;...;an] [b1;...;bm] = [f a1 b1; ... ;f an b1; ... ;f a1 bm; f an bm] *) @@ -114,11 +156,45 @@ lemma filter_false : ∀A,l,a,p. p a = false → theorem eq_map : ∀A,B,f,g,l. (∀x.f x = g x) → map A B f l = map A B g l. #A #B #f #g #l #eqfg (elim l) normalize // qed. -let rec dprodl (A:Type[0]) (f:A→Type[0]) (l1:list A) (g:(∀a:A.list (f a))) on l1 ≝ -match l1 with - [ nil ⇒ nil ? - | cons a tl ⇒ (map ??(dp ?? a) (g a)) @ dprodl A f tl g - ]. +(**************************** reverse *****************************) +let rec rev_append S (l1,l2:list S) on l1 ≝ + match l1 with + [ nil ⇒ l2 + | cons a tl ⇒ rev_append S tl (a::l2) + ] +. + +definition reverse ≝λS.λl.rev_append S l []. + +lemma reverse_single : ∀S,a. reverse S [a] = [a]. +// qed. + +lemma rev_append_def : ∀S,l1,l2. + rev_append S l1 l2 = (reverse S l1) @ l2 . +#S #l1 elim l1 normalize // +qed. + +lemma reverse_cons : ∀S,a,l. reverse S (a::l) = (reverse S l)@[a]. +#S #a #l whd in ⊢ (??%?); // +qed. + +lemma reverse_append: ∀S,l1,l2. + reverse S (l1 @ l2) = (reverse S l2)@(reverse S l1). +#S #l1 elim l1 [normalize // | #a #tl #Hind #l2 >reverse_cons +>reverse_cons // qed. + +lemma reverse_reverse : ∀S,l. reverse S (reverse S l) = l. +#S #l elim l // #a #tl #Hind >reverse_cons >reverse_append +normalize // qed. + +(* an elimination principle for lists working on the tail; +useful for strings *) +lemma list_elim_left: ∀S.∀P:list S → Prop. P (nil S) → +(∀a.∀tl.P tl → P (tl@[a])) → ∀l. P l. +#S #P #Pnil #Pstep #l <(reverse_reverse … l) +generalize in match (reverse S l); #l elim l // +#a #tl #H >reverse_cons @Pstep // +qed. (**************************** length ******************************) @@ -127,14 +203,351 @@ let rec length (A:Type[0]) (l:list A) on l ≝ [ nil ⇒ 0 | cons a tl ⇒ S (length A tl)]. -notation "|M|" non associative with precedence 60 for @{'norm $M}. -interpretation "norm" 'norm l = (length ? l). +interpretation "list length" 'card l = (length ? l). + +lemma length_tail: ∀A,l. length ? (tail A l) = pred (length ? l). +#A #l elim l // +qed. + +lemma length_tail1 : ∀A,l.0 < |l| → |tail A l| < |l|. +#A * normalize // +qed. lemma length_append: ∀A.∀l1,l2:list A. |l1@l2| = |l1|+|l2|. #A #l1 elim l1 // normalize /2/ qed. +lemma length_map: ∀A,B,l.∀f:A→B. length ? (map ?? f l) = length ? l. +#A #B #l #f elim l // #a #tl #Hind normalize // +qed. + +lemma length_reverse: ∀A.∀l:list A. + |reverse A l| = |l|. +#A #l elim l // #a #l0 #IH >reverse_cons >length_append normalize // +qed. + +lemma lenght_to_nil: ∀A.∀l:list A. + |l| = 0 → l = [ ]. +#A * // #a #tl normalize #H destruct +qed. + +lemma lists_length_split : + ∀A.∀l1,l2:list A.(∃la,lb.(|la| = |l1| ∧ l2 = la@lb) ∨ (|la| = |l2| ∧ l1 = la@lb)). +#A #l1 elim l1 +[ #l2 %{[ ]} %{l2} % % % +| #hd1 #tl1 #IH * + [ %{[ ]} %{(hd1::tl1)} %2 % % + | #hd2 #tl2 cases (IH tl2) #x * #y * + [ * #IH1 #IH2 %{(hd2::x)} %{y} % normalize % // + | * #IH1 #IH2 %{(hd1::x)} %{y} %2 normalize % // ] + ] +] +qed. + +(****************** traversing two lists in parallel *****************) +lemma list_ind2 : + ∀T1,T2:Type[0].∀l1:list T1.∀l2:list T2.∀P:list T1 → list T2 → Prop. + length ? l1 = length ? l2 → + (P [] []) → + (∀tl1,tl2,hd1,hd2. P tl1 tl2 → P (hd1::tl1) (hd2::tl2)) → + P l1 l2. +#T1 #T2 #l1 #l2 #P #Hl #Pnil #Pcons +generalize in match Hl; generalize in match l2; +elim l1 +[#l2 cases l2 // normalize #t2 #tl2 #H destruct +|#t1 #tl1 #IH #l2 cases l2 + [normalize #H destruct + |#t2 #tl2 #H @Pcons @IH normalize in H; destruct // ] +] +qed. + +lemma list_cases2 : + ∀T1,T2:Type[0].∀l1:list T1.∀l2:list T2.∀P:Prop. + length ? l1 = length ? l2 → + (l1 = [] → l2 = [] → P) → + (∀hd1,hd2,tl1,tl2.l1 = hd1::tl1 → l2 = hd2::tl2 → P) → P. +#T1 #T2 #l1 #l2 #P #Hl @(list_ind2 … Hl) +[ #Pnil #Pcons @Pnil // +| #tl1 #tl2 #hd1 #hd2 #IH1 #IH2 #Hp @Hp // ] +qed. + +(*********************** properties of append ***********************) +lemma append_l1_injective : + ∀A.∀l1,l2,l3,l4:list A. |l1| = |l2| → l1@l3 = l2@l4 → l1 = l2. +#a #l1 #l2 #l3 #l4 #Hlen @(list_ind2 … Hlen) // +#tl1 #tl2 #hd1 #hd2 #IH normalize #Heq destruct @eq_f /2/ +qed. + +lemma append_l2_injective : + ∀A.∀l1,l2,l3,l4:list A. |l1| = |l2| → l1@l3 = l2@l4 → l3 = l4. +#a #l1 #l2 #l3 #l4 #Hlen @(list_ind2 … Hlen) normalize // +#tl1 #tl2 #hd1 #hd2 #IH normalize #Heq destruct /2/ +qed. + +lemma append_l1_injective_r : + ∀A.∀l1,l2,l3,l4:list A. |l3| = |l4| → l1@l3 = l2@l4 → l1 = l2. +#a #l1 #l2 #l3 #l4 #Hlen #Heq lapply (eq_f … (reverse ?) … Heq) +>reverse_append >reverse_append #Heq1 +lapply (append_l2_injective … Heq1) [ // ] #Heq2 +lapply (eq_f … (reverse ?) … Heq2) // +qed. + +lemma append_l2_injective_r : + ∀A.∀l1,l2,l3,l4:list A. |l3| = |l4| → l1@l3 = l2@l4 → l3 = l4. +#a #l1 #l2 #l3 #l4 #Hlen #Heq lapply (eq_f … (reverse ?) … Heq) +>reverse_append >reverse_append #Heq1 +lapply (append_l1_injective … Heq1) [ // ] #Heq2 +lapply (eq_f … (reverse ?) … Heq2) // +qed. + +lemma length_rev_append: ∀A.∀l,acc:list A. + |rev_append ? l acc| = |l|+|acc|. +#A #l elim l // #a #tl #Hind normalize +#acc >Hind normalize // +qed. + +(****************************** mem ********************************) +let rec mem A (a:A) (l:list A) on l ≝ + match l with + [ nil ⇒ False + | cons hd tl ⇒ a=hd ∨ mem A a tl + ]. + +lemma mem_append: ∀A,a,l1,l2.mem A a (l1@l2) → + mem ? a l1 ∨ mem ? a l2. +#A #a #l1 elim l1 + [#l2 #mema %2 @mema + |#b #tl #Hind #l2 * + [#eqab %1 %1 @eqab + |#Hmema cases (Hind ? Hmema) -Hmema #Hmema [%1 %2 //|%2 //] + ] + ] +qed. + +lemma mem_append_l1: ∀A,a,l1,l2.mem A a l1 → mem A a (l1@l2). +#A #a #l1 #l2 elim l1 + [whd in ⊢ (%→?); @False_ind + |#b #tl #Hind * [#eqab %1 @eqab |#Hmema %2 @Hind //] + ] +qed. + +lemma mem_append_l2: ∀A,a,l1,l2.mem A a l2 → mem A a (l1@l2). +#A #a #l1 #l2 elim l1 [//|#b #tl #Hind #Hmema %2 @Hind //] +qed. + +lemma mem_single: ∀A,a,b. mem A a [b] → a=b. +#A #a #b * // @False_ind +qed. + +lemma mem_map: ∀A,B.∀f:A→B.∀l,b. + mem ? b (map … f l) → ∃a. mem ? a l ∧ f a = b. +#A #B #f #l elim l + [#b normalize @False_ind + |#a #tl #Hind #b normalize * + [#eqb @(ex_intro … a) /3/ + |#memb cases (Hind … memb) #a * #mema #eqb + @(ex_intro … a) /3/ + ] + ] +qed. + +lemma mem_map_forward: ∀A,B.∀f:A→B.∀a,l. + mem A a l → mem B (f a) (map ?? f l). + #A #B #f #a #l elim l + [normalize @False_ind + |#b #tl #Hind * + [#eqab H normalize [2:@Hind] +* [#eqab // | @Hind] +qed. + +lemma mem_filter_l: ∀S,f,x,l. (f x = true) → mem S x l → +mem S x (filter ? f l). +#S #f #x #l #fx elim l [@False_ind] +#b #tl #Hind * + [#eqxb (filter_true ???? fx) %1 % + |#Htl cases (true_or_false (f b)) #fb + [>(filter_true ???? fb) %2 @Hind @Htl + |>(filter_false ???? fb) @Hind @Htl + ] + ] +qed. + +lemma filter_case: ∀A,p,l,x. mem ? x l → + mem ? x (filter A p l) ∨ mem ? x (filter A (λx.¬ p x) l). +#A #p #l elim l + [#x @False_ind + |#a #tl #Hind #x * + [#eqxa >eqxa cases (true_or_false (p a)) #Hcase + [%1 >(filter_true A tl a p Hcase) %1 % + |%2 >(filter_true A tl a ??) [%1 % | >Hcase %] + ] + |#memx cases (Hind … memx) -memx #memx + [%1 cases (true_or_false (p a)) #Hpa + [>(filter_true A tl a p Hpa) %2 @memx + |>(filter_false A tl a p Hpa) @memx + ] + |cases (true_or_false (p a)) #Hcase + [%2 >(filter_false A tl a) [@memx |>Hcase %] + |%2 >(filter_true A tl a) [%2 @memx|>Hcase %] + ] + ] + ] + ] +qed. + +lemma filter_length2: ∀A,p,l. |filter A p l|+|filter A (λx.¬ p x) l| = |l|. +#A #p #l elim l // +#a #tl #Hind cases (true_or_false (p a)) #Hcase + [>(filter_true A tl a p Hcase) >(filter_false A tl a ??) + [@(eq_f ?? S) @Hind | >Hcase %] + |>(filter_false A tl a p Hcase) >(filter_true A tl a ??) + [Hcase %] + ] +qed. + +(***************************** unique *******************************) +let rec unique A (l:list A) on l ≝ + match l with + [nil ⇒ True + |cons a tl ⇒ ¬ mem A a tl ∧ unique A tl]. + +lemma unique_filter : ∀S,l,f. + unique S l → unique S (filter S f l). +#S #l #f elim l // +#a #tl #Hind * +#memba #uniquetl cases (true_or_false … (f a)) #Hfa + [>(filter_true ???? Hfa) % + [@(not_to_not … memba) @mem_filter |/2/ ] + |>filter_false /2/ + ] +qed. + +lemma filter_eqb : ∀m,l. unique ? l → + (mem ? m l ∧ filter ? (eqb m) l = [m])∨(¬mem ? m l ∧ filter ? (eqb m) l = []). +#m #l elim l + [#_ %2 % [% @False_ind | //] + |#a #tl #Hind * #Hmema #Hunique + cases (Hind Hunique) + [* #Hmemm #Hind %1 % [%2 //] + >filter_false // @not_eq_to_eqb_false % #eqma @(absurd ? Hmemm) // + |* #Hmemm #Hind cases (decidable_eq_nat m a) #eqma + [%1 filter_true [2: @eq_to_eqb_true //] >Hind // + |%2 % + [@(not_to_not … Hmemm) * // #H @False_ind @(absurd … H) // + |>filter_false // @not_eq_to_eqb_false @eqma + ] + ] + ] + ] +qed. + +lemma length_filter_eqb: ∀m,l. unique ? l → + |filter ? (eqb m) l| ≤ 1. +#m #l #Huni cases (filter_eqb m l Huni) * #_ #H >H // +qed. + +(***************************** split *******************************) +let rec split_rev A (l:list A) acc n on n ≝ + match n with + [O ⇒ 〈acc,l〉 + |S m ⇒ match l with + [nil ⇒ 〈acc,[]〉 + |cons a tl ⇒ split_rev A tl (a::acc) m + ] + ]. + +definition split ≝ λA,l,n. + let 〈l1,l2〉 ≝ split_rev A l [] n in 〈reverse ? l1,l2〉. + +lemma split_rev_len: ∀A,n,l,acc. n ≤ |l| → + |\fst (split_rev A l acc n)| = n+|acc|. +#A #n elim n // #m #Hind * + [normalize #acc #Hfalse @False_ind /2/ + |#a #tl #acc #Hlen normalize >Hind + [normalize // |@le_S_S_to_le //] + ] +qed. + +lemma split_len: ∀A,n,l. n ≤ |l| → + |\fst (split A l n)| = n. +#A #n #l #Hlen normalize >(eq_pair_fst_snd ?? (split_rev …)) +normalize >length_reverse >(split_rev_len … [ ] Hlen) normalize // +qed. + +lemma split_rev_eq: ∀A,n,l,acc. n ≤ |l| → + reverse ? acc@ l = + reverse ? (\fst (split_rev A l acc n))@(\snd (split_rev A l acc n)). + #A #n elim n // + #m #Hind * + [#acc whd in ⊢ ((??%)→?); #False_ind /2/ + |#a #tl #acc #Hlen >append_cons (split_rev_eq … Hlen) normalize +>(eq_pair_fst_snd ?? (split_rev A l [] n)) % +qed. + +lemma split_exists: ∀A,n.∀l:list A. n ≤ |l| → + ∃l1,l2. l = l1@l2 ∧ |l1| = n. +#A #n #l #Hlen @(ex_intro … (\fst (split A l n))) +@(ex_intro … (\snd (split A l n))) % /2/ +qed. + +(****************************** flatten ******************************) +definition flatten ≝ λA.foldr (list A) (list A) (append A) []. + +lemma flatten_to_mem: ∀A,n,l,l1,l2.∀a:list A. 0 < n → + (∀x. mem ? x l → |x| = n) → |a| = n → flatten ? l = l1@a@l2 → + (∃q.|l1| = n*q) → mem ? a l. +#A #n #l elim l + [normalize #l1 #l2 #a #posn #Hlen #Ha #Hnil @False_ind + cut (|a|=0) [@sym_eq @le_n_O_to_eq + @(transitive_le ? (|nil A|)) // >Hnil >length_append >length_append //] /2/ + |#hd #tl #Hind #l1 #l2 #a #posn #Hlen #Ha + whd in match (flatten ??); #Hflat * #q cases q + [(lenght_to_nil… Hl1) in Hflat; + whd in ⊢ ((???%)→?); #Hflat @sym_eq @(append_l1_injective … Hflat) + >Ha >Hlen // %1 // + ] /2/ + |#q1 #Hl1 lapply (split_exists … n l1 ?) // + * #l11 * #l12 * #Heql1 #Hlenl11 %2 + @(Hind l12 l2 … posn ? Ha) + [#x #memx @Hlen %2 // + |@(append_l2_injective ? hd l11) + [>Hlenl11 @Hlen %1 % + |>Hflat >Heql1 >associative_append % + ] + |@(ex_intro …q1) @(injective_plus_r n) + Hl1 // + ] + ] + ] +qed. + (****************************** nth ********************************) let rec nth n (A:Type[0]) (l:list A) (d:A) ≝ match n with @@ -145,13 +558,142 @@ lemma nth_nil: ∀A,a,i. nth i A ([]) a = a. #A #a #i elim i normalize // qed. +(****************************** nth_opt ********************************) +let rec nth_opt (A:Type[0]) (n:nat) (l:list A) on l : option A ≝ +match l with +[ nil ⇒ None ? +| cons h t ⇒ match n with [ O ⇒ Some ? h | S m ⇒ nth_opt A m t ] +]. + +(**************************** All *******************************) + +let rec All (A:Type[0]) (P:A → Prop) (l:list A) on l : Prop ≝ +match l with +[ nil ⇒ True +| cons h t ⇒ P h ∧ All A P t +]. + +lemma All_mp : ∀A,P,Q. (∀a.P a → Q a) → ∀l. All A P l → All A Q l. +#A #P #Q #H #l elim l normalize // +#h #t #IH * /3/ +qed. + +lemma All_nth : ∀A,P,n,l. + All A P l → + ∀a. + nth_opt A n l = Some A a → + P a. +#A #P #n elim n +[ * [ #_ #a #E whd in E:(??%?); destruct + | #hd #tl * #H #_ #a #E whd in E:(??%?); destruct @H + ] +| #m #IH * + [ #_ #a #E whd in E:(??%?); destruct + | #hd #tl * #_ whd in ⊢ (? → ∀_.??%? → ?); @IH + ] +] qed. + +lemma All_append: ∀A,P,l1,l2. All A P l1 → All A P l2 → All A P (l1@l2). +#A #P #l1 elim l1 -l1 // +#a #l1 #IHl1 #l2 * /3 width=1/ +qed. + +lemma All_inv_append: ∀A,P,l1,l2. All A P (l1@l2) → All A P l1 ∧ All A P l2. +#A #P #l1 elim l1 -l1 /2 width=1/ +#a #l1 #IHl1 #l2 * #Ha #Hl12 +elim (IHl1 … Hl12) -IHl1 -Hl12 /3 width=1/ +qed-. + +(**************************** Allr ******************************) + +let rec Allr (A:Type[0]) (R:relation A) (l:list A) on l : Prop ≝ +match l with +[ nil ⇒ True +| cons a1 l ⇒ match l with [ nil ⇒ True | cons a2 _ ⇒ R a1 a2 ∧ Allr A R l ] +]. + +lemma Allr_fwd_append_sn: ∀A,R,l1,l2. Allr A R (l1@l2) → Allr A R l1. +#A #R #l1 elim l1 -l1 // #a1 * // #a2 #l1 #IHl1 #l2 * /3 width=2/ +qed-. + +lemma Allr_fwd_cons: ∀A,R,a,l. Allr A R (a::l) → Allr A R l. +#A #R #a * // #a0 #l * // +qed-. + +lemma Allr_fwd_append_dx: ∀A,R,l1,l2. Allr A R (l1@l2) → Allr A R l2. +#A #R #l1 elim l1 -l1 // #a1 #l1 #IHl1 #l2 #H +lapply (Allr_fwd_cons … (l1@l2) H) -H /2 width=1/ +qed-. + +(**************************** Exists *******************************) + +let rec Exists (A:Type[0]) (P:A → Prop) (l:list A) on l : Prop ≝ +match l with +[ nil ⇒ False +| cons h t ⇒ (P h) ∨ (Exists A P t) +]. + +lemma Exists_append : ∀A,P,l1,l2. + Exists A P (l1 @ l2) → Exists A P l1 ∨ Exists A P l2. +#A #P #l1 elim l1 +[ normalize /2/ +| #h #t #IH #l2 * + [ #H /3/ + | #H cases (IH l2 H) /3/ + ] +] qed. + +lemma Exists_append_l : ∀A,P,l1,l2. + Exists A P l1 → Exists A P (l1@l2). +#A #P #l1 #l2 elim l1 +[ * +| #h #t #IH * + [ #H %1 @H + | #H %2 @IH @H + ] +] qed. + +lemma Exists_append_r : ∀A,P,l1,l2. + Exists A P l2 → Exists A P (l1@l2). +#A #P #l1 #l2 elim l1 +[ #H @H +| #h #t #IH #H %2 @IH @H +] qed. + +lemma Exists_add : ∀A,P,l1,x,l2. Exists A P (l1@l2) → Exists A P (l1@x::l2). +#A #P #l1 #x #l2 elim l1 +[ normalize #H %2 @H +| #h #t #IH normalize * [ #H %1 @H | #H %2 @IH @H ] +qed. + +lemma Exists_mid : ∀A,P,l1,x,l2. P x → Exists A P (l1@x::l2). +#A #P #l1 #x #l2 #H elim l1 +[ %1 @H +| #h #t #IH %2 @IH +] qed. + +lemma Exists_map : ∀A,B,P,Q,f,l. +Exists A P l → +(∀a.P a → Q (f a)) → +Exists B Q (map A B f l). +#A #B #P #Q #f #l elim l // +#h #t #IH * [ #H #F %1 @F @H | #H #F %2 @IH [ @H | @F ] ] qed. + +lemma Exists_All : ∀A,P,Q,l. + Exists A P l → + All A Q l → + ∃x. P x ∧ Q x. +#A #P #Q #l elim l [ * | #hd #tl #IH * [ #H1 * #H2 #_ %{hd} /2/ | #H1 * #_ #H2 @IH // ] +qed. + (**************************** fold *******************************) let rec fold (A,B:Type[0]) (op:B → B → B) (b:B) (p:A→bool) (f:A→B) (l:list A) on l :B ≝ match l with [ nil ⇒ b - | cons a l ⇒ if_then_else ? (p a) (op (f a) (fold A B op b p f l)) - (fold A B op b p f l)]. + | cons a l ⇒ + if p a then op (f a) (fold A B op b p f l) + else fold A B op b p f l]. notation "\fold [ op , nil ]_{ ident i ∈ l | p} f" with precedence 80 @@ -225,6 +767,35 @@ lemma lhd_cons_ltl: ∀A,n,l. lhd A l n @ ltl A l n = l. qed. lemma length_ltl: ∀A,n,l. |ltl A l n| = |l| - n. -#A #n elim n -n /2/ +#A #n elim n -n // #n #IHn *; normalize /2/ qed. + +(********************** find ******************************) +let rec find (A,B:Type[0]) (f:A → option B) (l:list A) on l : option B ≝ +match l with +[ nil ⇒ None B +| cons h t ⇒ + match f h with + [ None ⇒ find A B f t + | Some b ⇒ Some B b + ] +]. + +(********************** position_of ******************************) +let rec position_of_aux (A:Type[0]) (found: A → bool) (l:list A) (acc:nat) on l : option nat ≝ +match l with +[ nil ⇒ None ? +| cons h t ⇒ + match found h with [true ⇒ Some … acc | false ⇒ position_of_aux … found t (S acc)]]. + +definition position_of: ∀A:Type[0]. (A → bool) → list A → option nat ≝ + λA,found,l. position_of_aux A found l 0. + + +(********************** make_list ******************************) +let rec make_list (A:Type[0]) (a:A) (n:nat) on n : list A ≝ +match n with +[ O ⇒ [ ] +| S m ⇒ a::(make_list A a m) +].