X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Flogic.ma;h=a3858dfb749a73c58c48cebbf53e5e2a93807b14;hb=2343da541bb828ac61079d7811c0fe5613b04fb6;hp=1b801a14bf8f339ef9fd20ff57072edd1022d595;hpb=6bbf27282bad84e066bb952e41dbc8f72b31de6c;p=helm.git diff --git a/matita/matita/lib/basics/logic.ma b/matita/matita/lib/basics/logic.ma index 1b801a14b..a3858dfb7 100644 --- a/matita/matita/lib/basics/logic.ma +++ b/matita/matita/lib/basics/logic.ma @@ -14,31 +14,42 @@ include "hints_declaration.ma". (* propositional equality *) -inductive eq (A:Type[1]) (x:A) : A → Prop ≝ +inductive eq (A:Type[2]) (x:A) : A → Prop ≝ refl: eq A x x. interpretation "leibnitz's equality" 'eq t x y = (eq t x y). +interpretation "leibniz reflexivity" 'refl = refl. lemma eq_rect_r: - ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → Type[2]. P a (refl A a) → P x p. + ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → Type[3]. P a (refl A a) → P x p. #A #a #x #p (cases p) // qed. lemma eq_ind_r : ∀A.∀a.∀P: ∀x:A. x = a → Prop. P a (refl A a) → ∀x.∀p:eq ? x a.P x p. #A #a #P #p #x0 #p0; @(eq_rect_r ? ? ? p0) //; qed. +lemma eq_rect_Type0_r: + ∀A.∀a.∀P: ∀x:A. eq ? x a → Type[0]. P a (refl A a) → ∀x.∀p:eq ? x a.P x p. + #A #a #P #H #x #p (generalize in match H) (generalize in match P) + cases p; //; qed. + lemma eq_rect_Type2_r: ∀A.∀a.∀P: ∀x:A. eq ? x a → Type[2]. P a (refl A a) → ∀x.∀p:eq ? x a.P x p. #A #a #P #H #x #p (generalize in match H) (generalize in match P) cases p; //; qed. -theorem rewrite_l: ∀A:Type[1].∀x.∀P:A → Type[1]. P x → ∀y. x = y → P y. +lemma eq_rect_Type3_r: + ∀A.∀a.∀P: ∀x:A. eq ? x a → Type[3]. P a (refl A a) → ∀x.∀p:eq ? x a.P x p. + #A #a #P #H #x #p (generalize in match H) (generalize in match P) + cases p; //; qed. + +theorem rewrite_l: ∀A:Type[2].∀x.∀P:A → Type[2]. P x → ∀y. x = y → P y. #A #x #P #Hx #y #Heq (cases Heq); //; qed. theorem sym_eq: ∀A.∀x,y:A. x = y → y = x. #A #x #y #Heq @(rewrite_l A x (λz.z=x)); //; qed. -theorem rewrite_r: ∀A:Type[1].∀x.∀P:A → Type[1]. P x → ∀y. y = x → P y. +theorem rewrite_r: ∀A:Type[2].∀x.∀P:A → Type[2]. P x → ∀y. y = x → P y. #A #x #P #Hx #y #Heq (cases (sym_eq ? ? ? Heq)); //; qed. theorem eq_coerc: ∀A,B:Type[0].A→(A=B)→B. @@ -55,6 +66,10 @@ theorem eq_f2: ∀A,B,C.∀f:A→B→C. ∀x1,x2:A.∀y1,y2:B. x1=x2 → y1=y2 → f x1 y1 = f x2 y2. #A #B #C #f #x1 #x2 #y1 #y2 #E1 #E2 >E1; >E2; //; qed. +lemma eq_f3: ∀A,B,C,D.∀f:A→B→C->D. +∀x1,x2:A.∀y1,y2:B. ∀z1,z2:C. x1=x2 → y1=y2 → z1=z2 → f x1 y1 z1 = f x2 y2 z2. +#A #B #C #D #f #x1 #x2 #y1 #y2 #z1 #z2 #E1 #E2 #E3 >E1; >E2; >E3 //; qed. + (* hint to genereric equality definition eq_equality: equality ≝ mk_equality eq refl rewrite_l rewrite_r. @@ -141,7 +156,7 @@ definition R0 ≝ λT:Type[0].λt:T.t. definition R1 ≝ eq_rect_Type0. -(* useless stuff +(* used for lambda-delta *) definition R2 : ∀T0:Type[0]. ∀a0:T0. @@ -216,7 +231,16 @@ definition R4 : @(eq_rect_Type0 ????? e3) @(R3 ????????? e0 ? e1 ? e2) @a4 -qed. *) +qed. + +definition eqProp ≝ λA:Prop.eq A. -(* TODO concrete definition by means of proof irrelevance *) -axiom streicherK : ∀T:Type[1].∀t:T.∀P:t = t → Type[2].P (refl ? t) → ∀p.P p. +(* Example to avoid indexing and the consequential creation of ill typed + terms during paramodulation *) +example lemmaK : ∀A.∀x:A.∀h:x=x. eqProp ? h (refl A x). +#A #x #h @(refl ? h: eqProp ? ? ?). +qed. + +theorem streicherK : ∀T:Type[2].∀t:T.∀P:t = t → Type[3].P (refl ? t) → ∀p.P p. + #T #t #P #H #p >(lemmaK T t p) @H +qed.