X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Frelations.ma;h=84dd7c362bf7a86e590fc474130372bbc5e703f7;hb=07f64a04ac6061c853d2e60237a7173968c6d759;hp=55b26b8aefe71f567dda9b9bd34761a79ed4442f;hpb=5b28867e30a9cada823ad86ae91d39b94648940a;p=helm.git diff --git a/matita/matita/lib/basics/relations.ma b/matita/matita/lib/basics/relations.ma index 55b26b8ae..84dd7c362 100644 --- a/matita/matita/lib/basics/relations.ma +++ b/matita/matita/lib/basics/relations.ma @@ -23,6 +23,9 @@ definition relation : Type[0] → Type[0] definition relation2 : Type[0] → Type[0] → Type[0] ≝ λA,B.A→B→Prop. +definition relation3 : Type[0] → Type[0] → Type[0] → Type[0] +≝ λA,B,C.A→B→C→Prop. + definition reflexive: ∀A.∀R :relation A.Prop ≝ λA.λR.∀x:A.R x x. @@ -45,7 +48,29 @@ definition tight_apart: ∀A.∀eq,ap:relation A.Prop definition antisymmetric: ∀A.∀R:relation A.Prop ≝ λA.λR.∀x,y:A. R x y → ¬(R y x). +definition singlevalued: ∀A,B. predicate (relation2 A B) ≝ λA,B,R. + ∀a,b1. R a b1 → ∀b2. R a b2 → b1 = b2. + +definition confluent1: ∀A. relation A → predicate A ≝ λA,R,a0. + ∀a1. R a0 a1 → ∀a2. R a0 a2 → + ∃∃a. R a1 a & R a2 a. + +definition confluent: ∀A. predicate (relation A) ≝ λA,R. + ∀a0. confluent1 … R a0. + +(* Reflexive closure ************) + +definition RC: ∀A:Type[0]. relation A → relation A ≝ + λA,R,x,y. R … x y ∨ x = y. + +lemma RC_reflexive: ∀A,R. reflexive A (RC … R). +/2 width=1/ qed. + (********** operations **********) +definition Rcomp ≝ λA.λR1,R2:relation A.λa1,a2. + ∃am.R1 a1 am ∧ R2 am a2. +interpretation "relation composition" 'compose R1 R2 = (Rcomp ? R1 R2). + definition Runion ≝ λA.λR1,R2:relation A.λa,b. R1 a b ∨ R2 a b. interpretation "union of relations" 'union R1 R2 = (Runion ? R1 R2). @@ -54,10 +79,36 @@ interpretation "interesecion of relations" 'intersects R1 R2 = (Rintersection ? definition inv ≝ λA.λR:relation A.λa,b.R b a. +(*********** sub relation ***********) definition subR ≝ λA.λR,S:relation A.(∀a,b. R a b → S a b). interpretation "relation inclusion" 'subseteq R S = (subR ? R S). -(**********P functions **********) +lemma sub_reflexive : + ∀T.∀R:relation T.R ⊆ R. +#T #R #x // +qed. + +lemma sub_comp_l: ∀A.∀R,R1,R2:relation A. + R1 ⊆ R2 → R1 ∘ R ⊆ R2 ∘ R. +#A #R #R1 #R2 #Hsub #a #b * #c * /4/ +qed. + +lemma sub_comp_r: ∀A.∀R,R1,R2:relation A. + R1 ⊆ R2 → R ∘ R1 ⊆ R ∘ R2. +#A #R #R1 #R2 #Hsub #a #b * #c * /4/ +qed. + +lemma sub_assoc_l: ∀A.∀R1,R2,R3:relation A. + R1 ∘ (R2 ∘ R3) ⊆ (R1 ∘ R2) ∘ R3. +#A #R1 #R2 #R3 #a #b * #c * #Hac * #d * /5/ +qed. + +lemma sub_assoc_r: ∀A.∀R1,R2,R3:relation A. + (R1 ∘ R2) ∘ R3 ⊆ R1 ∘ (R2 ∘ R3). +#A #R1 #R2 #R3 #a #b * #c * * #d * /5 width=5/ +qed. + +(************* functions ************) definition compose ≝ λA,B,C:Type[0].λf:B→C.λg:A→B.λx:A.f (g x). @@ -126,3 +177,17 @@ for @{'eqF ? ? f g}. interpretation "functional extentional equality" 'eqF A B f g = (exteqF A B f g). +(********** relations on unboxed pairs **********) + +definition bi_relation: Type[0] → Type[0] → Type[0] +≝ λA,B.A→B→A→B→Prop. + +definition bi_reflexive: ∀A,B. ∀R:bi_relation A B. Prop +≝ λA,B,R. ∀x,y. R x y x y. + +definition bi_symmetric: ∀A,B. ∀R: bi_relation A B. Prop ≝ λA,B,R. + ∀a1,a2,b1,b2. R a2 b2 a1 b1 → R a1 b1 a2 b2. + +definition bi_transitive: ∀A,B. ∀R: bi_relation A B. Prop ≝ λA,B,R. + ∀a1,a,b1,b. R a1 b1 a b → + ∀a2,b2. R a b a2 b2 → R a1 b1 a2 b2.