X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Fstar.ma;h=166ba5d7e3de10a6ad24a2525f259de44a1ccf1a;hb=85a42e4a2a4c62818b6a98eff545e58ceb8770a4;hp=09730b6f22e586a145bca785f77dba56f30d80c4;hpb=08a53e81b883cc19ddec52a662e9c171656ec364;p=helm.git diff --git a/matita/matita/lib/basics/star.ma b/matita/matita/lib/basics/star.ma index 09730b6f2..166ba5d7e 100644 --- a/matita/matita/lib/basics/star.ma +++ b/matita/matita/lib/basics/star.ma @@ -11,12 +11,6 @@ include "basics/relations.ma". -(********** relations **********) - -definition subR ≝ λA.λR,S:relation A.(∀a,b. R a b → S a b). - -definition inv ≝ λA.λR:relation A.λa,b.R b a. - (* transitive closcure (plus) *) inductive TC (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ @@ -52,8 +46,8 @@ qed. (* star *) inductive star (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ - |inj: ∀b,c.star A R a b → R b c → star A R a c - |refl: star A R a a. + |sstep: ∀b,c.star A R a b → R b c → star A R a c + |srefl: star A R a a. lemma R_to_star: ∀A,R,a,b. R a b → star A R a b. #A #R #a #b /2/ @@ -97,24 +91,46 @@ lemma star_decomp_l : | /2/ ] qed. -axiom star_ind_l : +(* right associative version of star *) +inductive starl (A:Type[0]) (R:relation A) : A → A → Prop ≝ + |sstepl: ∀a,b,c.R a b → starl A R b c → starl A R a c + |refll: ∀a.starl A R a a. + +lemma starl_comp : ∀A,R,a,b,c. + starl A R a b → R b c → starl A R a c. +#A #R #a #b #c #Hstar elim Hstar + [#a1 #b1 #c1 #Rab #sbc #Hind #a1 @(sstepl … Rab) @Hind // + |#a1 #Rac @(sstepl … Rac) // + ] +qed. + +lemma star_compl : ∀A,R,a,b,c. + R a b → star A R b c → star A R a c. +#A #R #a #b #c #Rab #Hstar elim Hstar + [#b1 #c1 #sbb1 #Rb1c1 #Hind @(sstep … Rb1c1) @Hind + |@(sstep … Rab) // + ] +qed. + +lemma star_to_starl: ∀A,R,a,b.star A R a b → starl A R a b. +#A #R #a #b #Hs elim Hs // +#d #c #sad #Rdc #sad @(starl_comp … Rdc) // +qed. + +lemma starl_to_star: ∀A,R,a,b.starl A R a b → star A R a b. +#A #R #a #b #Hs elim Hs // -Hs -b -a +#a #b #c #Rab #sbc #sbc @(star_compl … Rab) // +qed. + +lemma star_ind_l : ∀A:Type[0].∀R:relation A.∀Q:A → A → Prop. (∀a.Q a a) → (∀a,b,c.R a b → star A R b c → Q b c → Q a c) → - ∀x,y.star A R x y → Q x y. -(* #A #R #Q #H1 #H2 #x #y #H0 elim H0 -[ #b #c #Hleft #Hright #IH - cases (star_decomp_l ???? Hleft) - [ #Hx @H2 // - | * #z * #H3 #H4 @(H2 … H3) /2/ -[ -| -generalize in match (λb.H2 x b y); elim H0 -[#b #c #Hleft #Hright #H2' #H3 @H3 - @(H3 b) - elim H0 -[ #b #c #Hleft #Hright #IH // -| *) + ∀a,b.star A R a b → Q a b. +#A #R #Q #H1 #H2 #a #b #H0 +elim (star_to_starl ???? H0) // -H0 -b -a +#a #b #c #Rab #slbc @H2 // @starl_to_star // +qed. (* RC and star *) @@ -201,23 +217,35 @@ lemma TC_dx_to_TC: ∀A. ∀R: relation A. #A #R #a1 #a2 #Ha12 elim Ha12 -a1 -a2 /2 width=3/ qed. -fact TC_star_ind_dx_aux: ∀A,R. reflexive A R → - ∀a2. ∀P:predicate A. P a2 → - (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → - ∀a1,a. TC … R a1 a → a = a2 → P a1. -#A #R #HR #a2 #P #Ha2 #H #a1 #a #Ha1 +fact TC_ind_dx_aux: ∀A,R,a2. ∀P:predicate A. + (∀a1. R a1 a2 → P a1) → + (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → + ∀a1,a. TC … R a1 a → a = a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #a #Ha1 elim (TC_to_TC_dx ???? Ha1) -a1 -a -[ #a #c #Hac #H destruct /3 width=4/ +[ #a #c #Hac #H destruct /2 width=1/ | #a #b #c #Hab #Hbc #IH #H destruct /3 width=4/ ] qed-. +lemma TC_ind_dx: ∀A,R,a2. ∀P:predicate A. + (∀a1. R a1 a2 → P a1) → + (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → + ∀a1. TC … R a1 a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #Ha12 +@(TC_ind_dx_aux … H1 H2 … Ha12) // +qed-. + +lemma TC_symmetric: ∀A,R. symmetric A R → symmetric A (TC … R). +#A #R #HR #x #y #H @(TC_ind_dx ??????? H) -x /3 width=1/ /3 width=3/ +qed. + lemma TC_star_ind_dx: ∀A,R. reflexive A R → ∀a2. ∀P:predicate A. P a2 → (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → ∀a1. TC … R a1 a2 → P a1. #A #R #HR #a2 #P #Ha2 #H #a1 #Ha12 -@(TC_star_ind_dx_aux … HR … Ha2 H … Ha12) // +@(TC_ind_dx … P ? H … Ha12) /3 width=4/ qed-. definition Conf3: ∀A,B. relation2 A B → relation A → Prop ≝ λA,B,S,R.