X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Fstar.ma;h=36aee8fe45465c016a6ca3709046a0c6fefd11c7;hb=ea368a02a071bb99eeb84bf24ab4000acb314d60;hp=bff1aaeef80042a2ae2e838317d0c5ed5c858a58;hpb=e0827239f4b44f2af9c7f88c4c7c41f2a193ae37;p=helm.git diff --git a/matita/matita/lib/basics/star.ma b/matita/matita/lib/basics/star.ma index bff1aaeef..36aee8fe4 100644 --- a/matita/matita/lib/basics/star.ma +++ b/matita/matita/lib/basics/star.ma @@ -11,12 +11,6 @@ include "basics/relations.ma". -(********** relations **********) - -definition subR ≝ λA.λR,S:relation A.(∀a,b. R a b → S a b). - -definition inv ≝ λA.λR:relation A.λa,b.R b a. - (* transitive closcure (plus) *) inductive TC (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ @@ -52,8 +46,8 @@ qed. (* star *) inductive star (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ - |inj: ∀b,c.star A R a b → R b c → star A R a c - |refl: star A R a a. + |sstep: ∀b,c.star A R a b → R b c → star A R a c + |srefl: star A R a a. lemma R_to_star: ∀A,R,a,b. R a b → star A R a b. #A #R #a #b /2/ @@ -88,6 +82,66 @@ theorem star_inv: ∀A,R. #H (elim H) /2/ normalize #c #d #H1 #H2 #H3 @(trans_star … H3) /2/ qed. +lemma star_decomp_l : + ∀A,R,x,y.star A R x y → x = y ∨ ∃z.R x z ∧ star A R z y. +#A #R #x #y #Hstar elim Hstar +[ #b #c #Hleft #Hright * + [ #H1 %2 @(ex_intro ?? c) % // + | * #x0 * #H1 #H2 %2 @(ex_intro ?? x0) % /2/ ] +| /2/ ] +qed. + +(* right associative version of star *) +inductive starl (A:Type[0]) (R:relation A) : A → A → Prop ≝ + |sstepl: ∀a,b,c.R a b → starl A R b c → starl A R a c + |refll: ∀a.starl A R a a. + +lemma starl_comp : ∀A,R,a,b,c. + starl A R a b → R b c → starl A R a c. +#A #R #a #b #c #Hstar elim Hstar + [#a1 #b1 #c1 #Rab #sbc #Hind #a1 @(sstepl … Rab) @Hind // + |#a1 #Rac @(sstepl … Rac) // + ] +qed. + +lemma star_compl : ∀A,R,a,b,c. + R a b → star A R b c → star A R a c. +#A #R #a #b #c #Rab #Hstar elim Hstar + [#b1 #c1 #sbb1 #Rb1c1 #Hind @(sstep … Rb1c1) @Hind + |@(sstep … Rab) // + ] +qed. + +lemma star_to_starl: ∀A,R,a,b.star A R a b → starl A R a b. +#A #R #a #b #Hs elim Hs // +#d #c #sad #Rdc #sad @(starl_comp … Rdc) // +qed. + +lemma starl_to_star: ∀A,R,a,b.starl A R a b → star A R a b. +#A #R #a #b #Hs elim Hs // -Hs -b -a +#a #b #c #Rab #sbc #sbc @(star_compl … Rab) // +qed. + +fact star_ind_l_aux: ∀A,R,a2. ∀P:predicate A. + P a2 → + (∀a1,a. R a1 a → star … R a a2 → P a → P a1) → + ∀a1,a. star … R a1 a → a = a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #a #Ha1 +elim (star_to_starl ???? Ha1) -a1 -a +[ #a #b #c #Hab #Hbc #IH #H destruct /3 width=4/ +| #a #H destruct /2 width=1/ +] +qed-. + +(* imporeved version of star_ind_l with "left_parameter" *) +lemma star_ind_l: ∀A,R,a2. ∀P:predicate A. + P a2 → + (∀a1,a. R a1 a → star … R a a2 → P a → P a1) → + ∀a1. star … R a1 a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #Ha12 +@(star_ind_l_aux … H1 H2 … Ha12) // +qed. + (* RC and star *) lemma TC_to_star: ∀A,R,a,b.TC A R a b → star A R a b. @@ -152,7 +206,7 @@ lemma TC_star_ind: ∀A,R. reflexive A R → ∀a1. ∀P:predicate A. P a1 → (∀a,a2. TC … R a1 a → R a a2 → P a → P a2) → ∀a2. TC … R a1 a2 → P a2. #A #R #H #a1 #P #Ha1 #IHa1 #a2 #Ha12 elim Ha12 -a2 /3 width=4/ -qed. +qed-. inductive TC_dx (A:Type[0]) (R:relation A): A → A → Prop ≝ |inj_dx: ∀a,c. R a c → TC_dx A R a c @@ -173,28 +227,215 @@ lemma TC_dx_to_TC: ∀A. ∀R: relation A. #A #R #a1 #a2 #Ha12 elim Ha12 -a1 -a2 /2 width=3/ qed. -fact TC_star_ind_dx_aux: ∀A,R. reflexive A R → - ∀a2. ∀P:predicate A. P a2 → - (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → - ∀a1,a. TC … R a1 a → a = a2 → P a1. -#A #R #HR #a2 #P #Ha2 #H #a1 #a #Ha1 +fact TC_ind_dx_aux: ∀A,R,a2. ∀P:predicate A. + (∀a1. R a1 a2 → P a1) → + (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → + ∀a1,a. TC … R a1 a → a = a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #a #Ha1 elim (TC_to_TC_dx ???? Ha1) -a1 -a -[ #a #c #Hac #H destruct /3 width=4/ +[ #a #c #Hac #H destruct /2 width=1/ | #a #b #c #Hab #Hbc #IH #H destruct /3 width=4/ ] qed-. +lemma TC_ind_dx: ∀A,R,a2. ∀P:predicate A. + (∀a1. R a1 a2 → P a1) → + (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → + ∀a1. TC … R a1 a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #Ha12 +@(TC_ind_dx_aux … H1 H2 … Ha12) // +qed-. + +lemma TC_symmetric: ∀A,R. symmetric A R → symmetric A (TC … R). +#A #R #HR #x #y #H @(TC_ind_dx ??????? H) -x /3 width=1/ /3 width=3/ +qed. + lemma TC_star_ind_dx: ∀A,R. reflexive A R → ∀a2. ∀P:predicate A. P a2 → (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → ∀a1. TC … R a1 a2 → P a1. #A #R #HR #a2 #P #Ha2 #H #a1 #Ha12 -@(TC_star_ind_dx_aux … HR … Ha2 H … Ha12) // +@(TC_ind_dx … P ? H … Ha12) /3 width=4/ qed-. -definition Conf3: ∀A. relation A → relation A → Prop ≝ λA,S,R. - ∀a,a1. S a1 a → ∀a2. R a1 a2 → S a2 a. +definition Conf3: ∀A,B. relation2 A B → relation A → Prop ≝ λA,B,S,R. + ∀b,a1. S a1 b → ∀a2. R a1 a2 → S a2 b. + +lemma TC_Conf3: ∀A,B,S,R. Conf3 A B S R → Conf3 A B S (TC … R). +#A #B #S #R #HSR #b #a1 #Ha1 #a2 #H elim H -a2 /2 width=3/ +qed. + +inductive bi_TC (A,B:Type[0]) (R:bi_relation A B) (a:A) (b:B): relation2 A B ≝ + |bi_inj : ∀c,d. R a b c d → bi_TC A B R a b c d + |bi_step: ∀c,d,e,f. bi_TC A B R a b c d → R c d e f → bi_TC A B R a b e f. + +lemma bi_TC_strap: ∀A,B. ∀R:bi_relation A B. ∀a1,a,a2,b1,b,b2. + R a1 b1 a b → bi_TC … R a b a2 b2 → bi_TC … R a1 b1 a2 b2. +#A #B #R #a1 #a #a2 #b1 #b #b2 #HR #H elim H -a2 -b2 /2 width=4/ /3 width=4/ +qed. + +lemma bi_TC_reflexive: ∀A,B,R. bi_reflexive A B R → + bi_reflexive A B (bi_TC … R). +/2 width=1/ qed. + +inductive bi_TC_dx (A,B:Type[0]) (R:bi_relation A B): bi_relation A B ≝ + |bi_inj_dx : ∀a1,a2,b1,b2. R a1 b1 a2 b2 → bi_TC_dx A B R a1 b1 a2 b2 + |bi_step_dx : ∀a1,a,a2,b1,b,b2. R a1 b1 a b → bi_TC_dx A B R a b a2 b2 → + bi_TC_dx A B R a1 b1 a2 b2. -lemma TC_Conf3: ∀A,S,R. Conf3 A S R → Conf3 A S (TC … R). -#A #S #R #HSR #a #a1 #Ha1 #a2 #H elim H -a2 /2 width=3/ +lemma bi_TC_dx_strap: ∀A,B. ∀R: bi_relation A B. + ∀a1,a,a2,b1,b,b2. bi_TC_dx A B R a1 b1 a b → + R a b a2 b2 → bi_TC_dx A B R a1 b1 a2 b2. +#A #B #R #a1 #a #a2 #b1 #b #b2 #H1 elim H1 -a -b /3 width=4/ qed. + +lemma bi_TC_to_bi_TC_dx: ∀A,B. ∀R: bi_relation A B. + ∀a1,a2,b1,b2. bi_TC … R a1 b1 a2 b2 → + bi_TC_dx … R a1 b1 a2 b2. +#A #B #R #a1 #a2 #b1 #b2 #H12 elim H12 -a2 -b2 /2 width=4/ +qed. + +lemma bi_TC_dx_to_bi_TC: ∀A,B. ∀R: bi_relation A B. + ∀a1,a2,b1,b2. bi_TC_dx … R a1 b1 a2 b2 → + bi_TC … R a1 b1 a2 b2. +#A #b #R #a1 #a2 #b1 #b2 #H12 elim H12 -a1 -a2 -b1 -b2 /2 width=4/ +qed. + +fact bi_TC_ind_dx_aux: ∀A,B,R,a2,b2. ∀P:relation2 A B. + (∀a1,b1. R a1 b1 a2 b2 → P a1 b1) → + (∀a1,a,b1,b. R a1 b1 a b → bi_TC … R a b a2 b2 → P a b → P a1 b1) → + ∀a1,a,b1,b. bi_TC … R a1 b1 a b → a = a2 → b = b2 → P a1 b1. +#A #B #R #a2 #b2 #P #H1 #H2 #a1 #a #b1 #b #H1 +elim (bi_TC_to_bi_TC_dx ??????? H1) -a1 -a -b1 -b +[ #a1 #x #b1 #y #H1 #Hx #Hy destruct /2 width=1/ +| #a1 #a #x #b1 #b #y #H1 #H #IH #Hx #Hy destruct /3 width=5/ +] +qed-. + +lemma bi_TC_ind_dx: ∀A,B,R,a2,b2. ∀P:relation2 A B. + (∀a1,b1. R a1 b1 a2 b2 → P a1 b1) → + (∀a1,a,b1,b. R a1 b1 a b → bi_TC … R a b a2 b2 → P a b → P a1 b1) → + ∀a1,b1. bi_TC … R a1 b1 a2 b2 → P a1 b1. +#A #B #R #a2 #b2 #P #H1 #H2 #a1 #b1 #H12 +@(bi_TC_ind_dx_aux ?????? H1 H2 … H12) // +qed-. + +lemma bi_TC_symmetric: ∀A,B,R. bi_symmetric A B R → + bi_symmetric A B (bi_TC … R). +#A #B #R #HR #a1 #a2 #b1 #b2 #H21 +@(bi_TC_ind_dx ?????????? H21) -a2 -b2 /3 width=1/ /3 width=4/ +qed. + +lemma bi_TC_transitive: ∀A,B,R. bi_transitive A B (bi_TC … R). +#A #B #R #a1 #a #b1 #b #H elim H -a -b /2 width=4/ /3 width=4/ +qed. + +definition bi_Conf3: ∀A,B,C. relation3 A B C → bi_relation A B → Prop ≝ λA,B,C,S,R. + ∀c,a1,b1. S a1 b1 c → ∀a2,b2. R a1 b1 a2 b2 → S a2 b2 c. + +lemma bi_TC_Conf3: ∀A,B,C,S,R. bi_Conf3 A B C S R → bi_Conf3 A B C S (bi_TC … R). +#A #B #C #S #R #HSR #c #a1 #b1 #Hab1 #a2 #b2 #H elim H -a2 -b2 /2 width=4/ +qed. + +lemma bi_TC_star_ind: ∀A,B,R. bi_reflexive A B R → ∀a1,b1. ∀P:relation2 A B. + P a1 b1 → (∀a,a2,b,b2. bi_TC … R a1 b1 a b → R a b a2 b2 → P a b → P a2 b2) → + ∀a2,b2. bi_TC … R a1 b1 a2 b2 → P a2 b2. +#A #B #R #HR #a1 #b1 #P #H1 #IH #a2 #b2 #H12 elim H12 -a2 -b2 /3 width=5/ +qed-. + +lemma bi_TC_star_ind_dx: ∀A,B,R. bi_reflexive A B R → + ∀a2,b2. ∀P:relation2 A B. P a2 b2 → + (∀a1,a,b1,b. R a1 b1 a b → bi_TC … R a b a2 b2 → P a b → P a1 b1) → + ∀a1,b1. bi_TC … R a1 b1 a2 b2 → P a1 b1. +#A #B #R #HR #a2 #b2 #P #H2 #IH #a1 #b1 #H12 +@(bi_TC_ind_dx … P ? IH … H12) /3 width=5/ +qed-. + +definition bi_star: ∀A,B,R. bi_relation A B ≝ λA,B,R,a1,b1,a2,b2. + (a1 = a2 ∧ b1 = b2) ∨ bi_TC A B R a1 b1 a2 b2. + +lemma bi_star_bi_reflexive: ∀A,B,R. bi_reflexive A B (bi_star … R). +/3 width=1/ qed. + +lemma bi_TC_to_bi_star: ∀A,B,R,a1,b1,a2,b2. + bi_TC A B R a1 b1 a2 b2 → bi_star A B R a1 b1 a2 b2. +/2 width=1/ qed. + +lemma bi_R_to_bi_star: ∀A,B,R,a1,b1,a2,b2. + R a1 b1 a2 b2 → bi_star A B R a1 b1 a2 b2. +/3 width=1/ qed. + +lemma bi_star_strap1: ∀A,B,R,a1,a,a2,b1,b,b2. bi_star A B R a1 b1 a b → + R a b a2 b2 → bi_star A B R a1 b1 a2 b2. +#A #B #R #a1 #a #a2 #b1 #b #b2 * +[ * #H1 #H2 destruct /2 width=1/ +| /3 width=4/ +] +qed. + +lemma bi_star_strap2: ∀A,B,R,a1,a,a2,b1,b,b2. R a1 b1 a b → + bi_star A B R a b a2 b2 → bi_star A B R a1 b1 a2 b2. +#A #B #R #a1 #a #a2 #b1 #b #b2 #H * +[ * #H1 #H2 destruct /2 width=1/ +| /3 width=4/ +] +qed. + +lemma bi_star_to_bi_TC_to_bi_TC: ∀A,B,R,a1,a,a2,b1,b,b2. bi_star A B R a1 b1 a b → + bi_TC A B R a b a2 b2 → bi_TC A B R a1 b1 a2 b2. +#A #B #R #a1 #a #a2 #b1 #b #b2 * +[ * #H1 #H2 destruct /2 width=1/ +| /2 width=4/ +] +qed. + +lemma bi_TC_to_bi_star_to_bi_TC: ∀A,B,R,a1,a,a2,b1,b,b2. bi_TC A B R a1 b1 a b → + bi_star A B R a b a2 b2 → bi_TC A B R a1 b1 a2 b2. +#A #B #R #a1 #a #a2 #b1 #b #b2 #H * +[ * #H1 #H2 destruct /2 width=1/ +| /2 width=4/ +] +qed. + +lemma bi_tansitive_bi_star: ∀A,B,R. bi_transitive A B (bi_star … R). +#A #B #R #a1 #a #b1 #b #H #a2 #b2 * +[ * #H1 #H2 destruct /2 width=1/ +| /3 width=4/ +] +qed. + +lemma bi_star_ind: ∀A,B,R,a1,b1. ∀P:relation2 A B. P a1 b1 → + (∀a,a2,b,b2. bi_star … R a1 b1 a b → R a b a2 b2 → P a b → P a2 b2) → + ∀a2,b2. bi_star … R a1 b1 a2 b2 → P a2 b2. +#A #B #R #a1 #b1 #P #H #IH #a2 #b2 * +[ * #H1 #H2 destruct // +| #H12 elim H12 -a2 -b2 /2 width=5/ -H /3 width=5/ +] +qed-. + +lemma bi_star_ind_dx: ∀A,B,R,a2,b2. ∀P:relation2 A B. P a2 b2 → + (∀a1,a,b1,b. R a1 b1 a b → bi_star … R a b a2 b2 → P a b → P a1 b1) → + ∀a1,b1. bi_star … R a1 b1 a2 b2 → P a1 b1. +#A #B #R #a2 #b2 #P #H #IH #a1 #b1 * +[ * #H1 #H2 destruct // +| #H12 @(bi_TC_ind_dx ?????????? H12) -a1 -b1 /2 width=5/ -H /3 width=5/ +] +qed-. + +(* ************ confluence of star *****************) + +lemma star_strip: ∀A,R. confluent A R → + ∀a0,a1. star … R a0 a1 → ∀a2. R a0 a2 → + ∃∃a. R a1 a & star … R a2 a. +#A #R #HR #a0 #a1 #H elim H -a1 /2 width=3/ +#a #a1 #_ #Ha1 #IHa0 #a2 #Ha02 +elim (IHa0 … Ha02) -a0 #a0 #Ha0 #Ha20 +elim (HR … Ha1 … Ha0) -a /3 width=5/ +qed-. + +lemma star_confluent: ∀A,R. confluent A R → confluent A (star … R). +#A #R #HR #a0 #a1 #H elim H -a1 /2 width=3/ +#a #a1 #_ #Ha1 #IHa0 #a2 #Ha02 +elim (IHa0 … Ha02) -a0 #a0 #Ha0 #Ha20 +elim (star_strip … HR … Ha0 … Ha1) -a /3 width=5/ +qed-.