X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Fstar.ma;h=391e085309e3ee2cbc9f535ee07af7f2179f34a1;hb=4adf9860cd26175c4d73b73e8adbb3c6ceaa19c9;hp=04d2d7317e4416b7031d18f5125f2ce78eeb72bc;hpb=2405e80ecd3a66780ef1d27066a648330aacf1b0;p=helm.git diff --git a/matita/matita/lib/basics/star.ma b/matita/matita/lib/basics/star.ma index 04d2d7317..391e08530 100644 --- a/matita/matita/lib/basics/star.ma +++ b/matita/matita/lib/basics/star.ma @@ -11,12 +11,6 @@ include "basics/relations.ma". -(********** relations **********) - -definition subR ≝ λA.λR,S:relation A.(∀a,b. R a b → S a b). - -definition inv ≝ λA.λR:relation A.λa,b.R b a. - (* transitive closcure (plus) *) inductive TC (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ @@ -52,8 +46,8 @@ qed. (* star *) inductive star (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ - |inj: ∀b,c.star A R a b → R b c → star A R a c - |refl: star A R a a. + |sstep: ∀b,c.star A R a b → R b c → star A R a c + |srefl: star A R a a. lemma R_to_star: ∀A,R,a,b. R a b → star A R a b. #A #R #a #b /2/ @@ -99,22 +93,22 @@ qed. (* right associative version of star *) inductive starl (A:Type[0]) (R:relation A) : A → A → Prop ≝ - |injl: ∀a,b,c.R a b → starl A R b c → starl A R a c + |sstepl: ∀a,b,c.R a b → starl A R b c → starl A R a c |refll: ∀a.starl A R a a. lemma starl_comp : ∀A,R,a,b,c. starl A R a b → R b c → starl A R a c. #A #R #a #b #c #Hstar elim Hstar - [#a1 #b1 #c1 #Rab #sbc #Hind #a1 @(injl … Rab) @Hind // - |#a1 #Rac @(injl … Rac) // + [#a1 #b1 #c1 #Rab #sbc #Hind #a1 @(sstepl … Rab) @Hind // + |#a1 #Rac @(sstepl … Rac) // ] qed. lemma star_compl : ∀A,R,a,b,c. R a b → star A R b c → star A R a c. #A #R #a #b #c #Rab #Hstar elim Hstar - [#b1 #c1 #sbb1 #Rb1c1 #Hind @(inj … Rb1c1) @Hind - |@(inj … Rab) // + [#b1 #c1 #sbb1 #Rb1c1 #Hind @(sstep … Rb1c1) @Hind + |@(sstep … Rab) // ] qed. @@ -128,17 +122,27 @@ lemma starl_to_star: ∀A,R,a,b.starl A R a b → star A R a b. #a #b #c #Rab #sbc #sbc @(star_compl … Rab) // qed. -lemma star_ind_l : - ∀A:Type[0].∀R:relation A.∀Q:A → A → Prop. - (∀a.Q a a) → - (∀a,b,c.R a b → star A R b c → Q b c → Q a c) → - ∀a,b.star A R a b → Q a b. -#A #R #Q #H1 #H2 #a #b #H0 -elim (star_to_starl ???? H0) // -H0 -b -a -#a #b #c #Rab #slbc @H2 // @starl_to_star // -qed. +fact star_ind_l_aux: ∀A,R,a2. ∀P:predicate A. + P a2 → + (∀a1,a. R a1 a → star … R a a2 → P a → P a1) → + ∀a1,a. star … R a1 a → a = a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #a #Ha1 +elim (star_to_starl ???? Ha1) -a1 -a +[ #a #b #c #Hab #Hbc #IH #H destruct /3 width=4/ +| #a #H destruct /2 width=1/ +] +qed-. + +(* imporeved version of star_ind_l with "left_parameter" *) +lemma star_ind_l: ∀A,R,a2. ∀P:predicate A. + P a2 → + (∀a1,a. R a1 a → star … R a a2 → P a → P a1) → + ∀a1. star … R a1 a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #Ha12 +@(star_ind_l_aux … H1 H2 … Ha12) // +qed. -(* RC and star *) +(* TC and star *) lemma TC_to_star: ∀A,R,a,b.TC A R a b → star A R a b. #R #A #a #b #TCH (elim TCH) /2/ @@ -189,62 +193,3 @@ lemma WF_antimonotonic: ∀A,R,S. subR A R S → #H #Hind % #c #Rcb @Hind @subRS // qed. -(* added from lambda_delta *) - -lemma TC_strap: ∀A. ∀R:relation A. ∀a1,a,a2. - R a1 a → TC … R a a2 → TC … R a1 a2. -/3 width=3/ qed. - -lemma TC_reflexive: ∀A,R. reflexive A R → reflexive A (TC … R). -/2 width=1/ qed. - -lemma TC_star_ind: ∀A,R. reflexive A R → ∀a1. ∀P:predicate A. - P a1 → (∀a,a2. TC … R a1 a → R a a2 → P a → P a2) → - ∀a2. TC … R a1 a2 → P a2. -#A #R #H #a1 #P #Ha1 #IHa1 #a2 #Ha12 elim Ha12 -a2 /3 width=4/ -qed. - -inductive TC_dx (A:Type[0]) (R:relation A): A → A → Prop ≝ - |inj_dx: ∀a,c. R a c → TC_dx A R a c - |step_dx : ∀a,b,c. R a b → TC_dx A R b c → TC_dx A R a c. - -lemma TC_dx_strap: ∀A. ∀R: relation A. - ∀a,b,c. TC_dx A R a b → R b c → TC_dx A R a c. -#A #R #a #b #c #Hab elim Hab -a -b /3 width=3/ -qed. - -lemma TC_to_TC_dx: ∀A. ∀R: relation A. - ∀a1,a2. TC … R a1 a2 → TC_dx … R a1 a2. -#A #R #a1 #a2 #Ha12 elim Ha12 -a2 /2 width=3/ -qed. - -lemma TC_dx_to_TC: ∀A. ∀R: relation A. - ∀a1,a2. TC_dx … R a1 a2 → TC … R a1 a2. -#A #R #a1 #a2 #Ha12 elim Ha12 -a1 -a2 /2 width=3/ -qed. - -fact TC_star_ind_dx_aux: ∀A,R. reflexive A R → - ∀a2. ∀P:predicate A. P a2 → - (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → - ∀a1,a. TC … R a1 a → a = a2 → P a1. -#A #R #HR #a2 #P #Ha2 #H #a1 #a #Ha1 -elim (TC_to_TC_dx ???? Ha1) -a1 -a -[ #a #c #Hac #H destruct /3 width=4/ -| #a #b #c #Hab #Hbc #IH #H destruct /3 width=4/ -] -qed-. - -lemma TC_star_ind_dx: ∀A,R. reflexive A R → - ∀a2. ∀P:predicate A. P a2 → - (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → - ∀a1. TC … R a1 a2 → P a1. -#A #R #HR #a2 #P #Ha2 #H #a1 #Ha12 -@(TC_star_ind_dx_aux … HR … Ha2 H … Ha12) // -qed-. - -definition Conf3: ∀A,B. relation2 A B → relation A → Prop ≝ λA,B,S,R. - ∀b,a1. S a1 b → ∀a2. R a1 a2 → S a2 b. - -lemma TC_Conf3: ∀A,B,S,R. Conf3 A B S R → Conf3 A B S (TC … R). -#A #B #S #R #HSR #b #a1 #Ha1 #a2 #H elim H -a2 /2 width=3/ -qed.