X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Fstar.ma;h=391e085309e3ee2cbc9f535ee07af7f2179f34a1;hb=bf816f05ddbe0ded4948dd33490619724dc4f7cf;hp=8e850c697dc21b058684a6756207470cb84ad3ae;hpb=bb397726bff29389cdcb649a8c37484395b3b85e;p=helm.git diff --git a/matita/matita/lib/basics/star.ma b/matita/matita/lib/basics/star.ma index 8e850c697..391e08530 100644 --- a/matita/matita/lib/basics/star.ma +++ b/matita/matita/lib/basics/star.ma @@ -11,11 +11,47 @@ include "basics/relations.ma". -(********** relations **********) +(* transitive closcure (plus) *) +inductive TC (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ + |inj: ∀c. R a c → TC A R a c + |step : ∀b,c.TC A R a b → R b c → TC A R a c. + +theorem trans_TC: ∀A,R,a,b,c. + TC A R a b → TC A R b c → TC A R a c. +#A #R #a #b #c #Hab #Hbc (elim Hbc) /2/ +qed. + +theorem TC_idem: ∀A,R. exteqR … (TC A R) (TC A (TC A R)). +#A #R #a #b % /2/ #H (elim H) /2/ +qed. + +lemma monotonic_TC: ∀A,R,S. subR A R S → subR A (TC A R) (TC A S). +#A #R #S #subRS #a #b #H (elim H) /3/ +qed. + +lemma sub_TC: ∀A,R,S. subR A R (TC A S) → subR A (TC A R) (TC A S). +#A #R #S #Hsub #a #b #H (elim H) /3/ +qed. + +theorem sub_TC_to_eq: ∀A,R,S. subR A R S → subR A S (TC A R) → + exteqR … (TC A R) (TC A S). +#A #R #S #sub1 #sub2 #a #b % /2/ +qed. + +theorem TC_inv: ∀A,R. exteqR ?? (TC A (inv A R)) (inv A (TC A R)). +#A #R #a #b % +#H (elim H) /2/ normalize #c #d #H1 #H2 #H3 @(trans_TC … H3) /2/ +qed. + +(* star *) inductive star (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ - |inj: ∀b,c.star A R a b → R b c → star A R a c - |refl: star A R a a. + |sstep: ∀b,c.star A R a b → R b c → star A R a c + |srefl: star A R a a. + +lemma R_to_star: ∀A,R,a,b. R a b → star A R a b. +#A #R #a #b /2/ +qed. theorem trans_star: ∀A,R,a,b,c. star A R a b → star A R b c → star A R a c. @@ -26,8 +62,6 @@ theorem star_star: ∀A,R. exteqR … (star A R) (star A (star A R)). #A #R #a #b % /2/ #H (elim H) /2/ qed. -definition subR ≝ λA.λR,S:relation A.(∀a,b. R a b → S a b). - lemma monotonic_star: ∀A,R,S. subR A R S → subR A (star A R) (star A S). #A #R #S #subRS #a #b #H (elim H) /3/ qed. @@ -42,6 +76,82 @@ theorem sub_star_to_eq: ∀A,R,S. subR A R S → subR A S (star A R) → #A #R #S #sub1 #sub2 #a #b % /2/ qed. +theorem star_inv: ∀A,R. + exteqR ?? (star A (inv A R)) (inv A (star A R)). +#A #R #a #b % +#H (elim H) /2/ normalize #c #d #H1 #H2 #H3 @(trans_star … H3) /2/ +qed. + +lemma star_decomp_l : + ∀A,R,x,y.star A R x y → x = y ∨ ∃z.R x z ∧ star A R z y. +#A #R #x #y #Hstar elim Hstar +[ #b #c #Hleft #Hright * + [ #H1 %2 @(ex_intro ?? c) % // + | * #x0 * #H1 #H2 %2 @(ex_intro ?? x0) % /2/ ] +| /2/ ] +qed. + +(* right associative version of star *) +inductive starl (A:Type[0]) (R:relation A) : A → A → Prop ≝ + |sstepl: ∀a,b,c.R a b → starl A R b c → starl A R a c + |refll: ∀a.starl A R a a. + +lemma starl_comp : ∀A,R,a,b,c. + starl A R a b → R b c → starl A R a c. +#A #R #a #b #c #Hstar elim Hstar + [#a1 #b1 #c1 #Rab #sbc #Hind #a1 @(sstepl … Rab) @Hind // + |#a1 #Rac @(sstepl … Rac) // + ] +qed. + +lemma star_compl : ∀A,R,a,b,c. + R a b → star A R b c → star A R a c. +#A #R #a #b #c #Rab #Hstar elim Hstar + [#b1 #c1 #sbb1 #Rb1c1 #Hind @(sstep … Rb1c1) @Hind + |@(sstep … Rab) // + ] +qed. + +lemma star_to_starl: ∀A,R,a,b.star A R a b → starl A R a b. +#A #R #a #b #Hs elim Hs // +#d #c #sad #Rdc #sad @(starl_comp … Rdc) // +qed. + +lemma starl_to_star: ∀A,R,a,b.starl A R a b → star A R a b. +#A #R #a #b #Hs elim Hs // -Hs -b -a +#a #b #c #Rab #sbc #sbc @(star_compl … Rab) // +qed. + +fact star_ind_l_aux: ∀A,R,a2. ∀P:predicate A. + P a2 → + (∀a1,a. R a1 a → star … R a a2 → P a → P a1) → + ∀a1,a. star … R a1 a → a = a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #a #Ha1 +elim (star_to_starl ???? Ha1) -a1 -a +[ #a #b #c #Hab #Hbc #IH #H destruct /3 width=4/ +| #a #H destruct /2 width=1/ +] +qed-. + +(* imporeved version of star_ind_l with "left_parameter" *) +lemma star_ind_l: ∀A,R,a2. ∀P:predicate A. + P a2 → + (∀a1,a. R a1 a → star … R a a2 → P a → P a1) → + ∀a1. star … R a1 a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #Ha12 +@(star_ind_l_aux … H1 H2 … Ha12) // +qed. + +(* TC and star *) + +lemma TC_to_star: ∀A,R,a,b.TC A R a b → star A R a b. +#R #A #a #b #TCH (elim TCH) /2/ +qed. + +lemma star_case: ∀A,R,a,b. star A R a b → a = b ∨ TC A R a b. +#A #R #a #b #H (elim H) /2/ #c #d #star_ac #Rcd * #H1 %2 /2/. +qed. + (* equiv -- smallest equivalence relation containing R *) inductive equiv (A:Type[0]) (R:relation A) : A → A → Prop ≝ @@ -51,7 +161,7 @@ inductive equiv (A:Type[0]) (R:relation A) : A → A → Prop ≝ theorem trans_equiv: ∀A,R,a,b,c. equiv A R a b → equiv A R b c → equiv A R a c. -#A #R #a #b #c #Hab #Hbc (inversion Hbc) /2/ +#A #R #a #b #c #Hab #Hbc (elim Hbc) /2/ qed. theorem equiv_equiv: ∀A,R. exteqR … (equiv A R) (equiv A (equiv A R)).