X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Fstar.ma;h=391e085309e3ee2cbc9f535ee07af7f2179f34a1;hb=bf816f05ddbe0ded4948dd33490619724dc4f7cf;hp=8fd32c2e1f3092ade0b5a40208b3afb2641c2f54;hpb=1185204d6a1e634a107fac71a45c9f87f49ccc31;p=helm.git diff --git a/matita/matita/lib/basics/star.ma b/matita/matita/lib/basics/star.ma index 8fd32c2e1..391e08530 100644 --- a/matita/matita/lib/basics/star.ma +++ b/matita/matita/lib/basics/star.ma @@ -11,12 +11,6 @@ include "basics/relations.ma". -(********** relations **********) - -definition subR ≝ λA.λR,S:relation A.(∀a,b. R a b → S a b). - -definition inv ≝ λA.λR:relation A.λa,b.R b a. - (* transitive closcure (plus) *) inductive TC (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ @@ -52,8 +46,8 @@ qed. (* star *) inductive star (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ - |inj: ∀b,c.star A R a b → R b c → star A R a c - |refl: star A R a a. + |sstep: ∀b,c.star A R a b → R b c → star A R a c + |srefl: star A R a a. lemma R_to_star: ∀A,R,a,b. R a b → star A R a b. #A #R #a #b /2/ @@ -88,7 +82,67 @@ theorem star_inv: ∀A,R. #H (elim H) /2/ normalize #c #d #H1 #H2 #H3 @(trans_star … H3) /2/ qed. -(* RC and star *) +lemma star_decomp_l : + ∀A,R,x,y.star A R x y → x = y ∨ ∃z.R x z ∧ star A R z y. +#A #R #x #y #Hstar elim Hstar +[ #b #c #Hleft #Hright * + [ #H1 %2 @(ex_intro ?? c) % // + | * #x0 * #H1 #H2 %2 @(ex_intro ?? x0) % /2/ ] +| /2/ ] +qed. + +(* right associative version of star *) +inductive starl (A:Type[0]) (R:relation A) : A → A → Prop ≝ + |sstepl: ∀a,b,c.R a b → starl A R b c → starl A R a c + |refll: ∀a.starl A R a a. + +lemma starl_comp : ∀A,R,a,b,c. + starl A R a b → R b c → starl A R a c. +#A #R #a #b #c #Hstar elim Hstar + [#a1 #b1 #c1 #Rab #sbc #Hind #a1 @(sstepl … Rab) @Hind // + |#a1 #Rac @(sstepl … Rac) // + ] +qed. + +lemma star_compl : ∀A,R,a,b,c. + R a b → star A R b c → star A R a c. +#A #R #a #b #c #Rab #Hstar elim Hstar + [#b1 #c1 #sbb1 #Rb1c1 #Hind @(sstep … Rb1c1) @Hind + |@(sstep … Rab) // + ] +qed. + +lemma star_to_starl: ∀A,R,a,b.star A R a b → starl A R a b. +#A #R #a #b #Hs elim Hs // +#d #c #sad #Rdc #sad @(starl_comp … Rdc) // +qed. + +lemma starl_to_star: ∀A,R,a,b.starl A R a b → star A R a b. +#A #R #a #b #Hs elim Hs // -Hs -b -a +#a #b #c #Rab #sbc #sbc @(star_compl … Rab) // +qed. + +fact star_ind_l_aux: ∀A,R,a2. ∀P:predicate A. + P a2 → + (∀a1,a. R a1 a → star … R a a2 → P a → P a1) → + ∀a1,a. star … R a1 a → a = a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #a #Ha1 +elim (star_to_starl ???? Ha1) -a1 -a +[ #a #b #c #Hab #Hbc #IH #H destruct /3 width=4/ +| #a #H destruct /2 width=1/ +] +qed-. + +(* imporeved version of star_ind_l with "left_parameter" *) +lemma star_ind_l: ∀A,R,a2. ∀P:predicate A. + P a2 → + (∀a1,a. R a1 a → star … R a a2 → P a → P a1) → + ∀a1. star … R a1 a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #Ha12 +@(star_ind_l_aux … H1 H2 … Ha12) // +qed. + +(* TC and star *) lemma TC_to_star: ∀A,R,a,b.TC A R a b → star A R a b. #R #A #a #b #TCH (elim TCH) /2/ @@ -139,62 +193,3 @@ lemma WF_antimonotonic: ∀A,R,S. subR A R S → #H #Hind % #c #Rcb @Hind @subRS // qed. -(* added from lambda_delta *) - -lemma TC_strap: ∀A. ∀R:relation A. ∀a1,a,a2. - R a1 a → TC … R a a2 → TC … R a1 a2. -/3 width=3/ qed. - -lemma TC_reflexive: ∀A,R. reflexive A R → reflexive A (TC … R). -/2 width=1/ qed. - -lemma TC_star_ind: ∀A,R. reflexive A R → ∀a1. ∀P:predicate A. - P a1 → (∀a,a2. TC … R a1 a → R a a2 → P a → P a2) → - ∀a2. TC … R a1 a2 → P a2. -#A #R #H #a1 #P #Ha1 #IHa1 #a2 #Ha12 elim Ha12 -a2 /3 width=4/ -qed. - -inductive TC_dx (A:Type[0]) (R:relation A): A → A → Prop ≝ - |inj_dx: ∀a,c. R a c → TC_dx A R a c - |step_dx : ∀a,b,c. R a b → TC_dx A R b c → TC_dx A R a c. - -lemma TC_dx_strap: ∀A. ∀R: relation A. - ∀a,b,c. TC_dx A R a b → R b c → TC_dx A R a c. -#A #R #a #b #c #Hab elim Hab -a -b /3 width=3/ -qed. - -lemma TC_to_TC_dx: ∀A. ∀R: relation A. - ∀a1,a2. TC … R a1 a2 → TC_dx … R a1 a2. -#A #R #a1 #a2 #Ha12 elim Ha12 -a2 /2 width=3/ -qed. - -lemma TC_dx_to_TC: ∀A. ∀R: relation A. - ∀a1,a2. TC_dx … R a1 a2 → TC … R a1 a2. -#A #R #a1 #a2 #Ha12 elim Ha12 -a1 -a2 /2 width=3/ -qed. - -fact TC_star_ind_dx_aux: ∀A,R. reflexive A R → - ∀a2. ∀P:predicate A. P a2 → - (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → - ∀a1,a. TC … R a1 a → a = a2 → P a1. -#A #R #HR #a2 #P #Ha2 #H #a1 #a #Ha1 -elim (TC_to_TC_dx ???? Ha1) -a1 -a -[ #a #c #Hac #H destruct /3 width=4/ -| #a #b #c #Hab #Hbc #IH #H destruct /3 width=4/ -] -qed-. - -lemma TC_star_ind_dx: ∀A,R. reflexive A R → - ∀a2. ∀P:predicate A. P a2 → - (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → - ∀a1. TC … R a1 a2 → P a1. -#A #R #HR #a2 #P #Ha2 #H #a1 #Ha12 -@(TC_star_ind_dx_aux … HR … Ha2 H … Ha12) // -qed-. - -definition Conf3: ∀A,B. relation2 A B → relation A → Prop ≝ λA,B,S,R. - ∀b,a1. S a1 b → ∀a2. R a1 a2 → S a2 b. - -lemma TC_Conf3: ∀A,B,S,R. Conf3 A B S R → Conf3 A B S (TC … R). -#A #B #S #R #HSR #b #a1 #Ha1 #a2 #H elim H -a2 /2 width=3/ -qed.