X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Fstar.ma;h=8fd32c2e1f3092ade0b5a40208b3afb2641c2f54;hb=913512bbc9202f2109d53acd43dc8c0270b17184;hp=c1b9c77c03c85a8cc739b6542b81563eebc37b22;hpb=a00c1b5c423e143cef6750ed75782dd91cdb1129;p=helm.git diff --git a/matita/matita/lib/basics/star.ma b/matita/matita/lib/basics/star.ma index c1b9c77c0..8fd32c2e1 100644 --- a/matita/matita/lib/basics/star.ma +++ b/matita/matita/lib/basics/star.ma @@ -107,7 +107,7 @@ inductive equiv (A:Type[0]) (R:relation A) : A → A → Prop ≝ theorem trans_equiv: ∀A,R,a,b,c. equiv A R a b → equiv A R b c → equiv A R a c. -#A #R #a #b #c #Hab #Hbc (inversion Hbc) /2/ +#A #R #a #b #c #Hab #Hbc (elim Hbc) /2/ qed. theorem equiv_equiv: ∀A,R. exteqR … (equiv A R) (equiv A (equiv A R)). @@ -139,3 +139,62 @@ lemma WF_antimonotonic: ∀A,R,S. subR A R S → #H #Hind % #c #Rcb @Hind @subRS // qed. +(* added from lambda_delta *) + +lemma TC_strap: ∀A. ∀R:relation A. ∀a1,a,a2. + R a1 a → TC … R a a2 → TC … R a1 a2. +/3 width=3/ qed. + +lemma TC_reflexive: ∀A,R. reflexive A R → reflexive A (TC … R). +/2 width=1/ qed. + +lemma TC_star_ind: ∀A,R. reflexive A R → ∀a1. ∀P:predicate A. + P a1 → (∀a,a2. TC … R a1 a → R a a2 → P a → P a2) → + ∀a2. TC … R a1 a2 → P a2. +#A #R #H #a1 #P #Ha1 #IHa1 #a2 #Ha12 elim Ha12 -a2 /3 width=4/ +qed. + +inductive TC_dx (A:Type[0]) (R:relation A): A → A → Prop ≝ + |inj_dx: ∀a,c. R a c → TC_dx A R a c + |step_dx : ∀a,b,c. R a b → TC_dx A R b c → TC_dx A R a c. + +lemma TC_dx_strap: ∀A. ∀R: relation A. + ∀a,b,c. TC_dx A R a b → R b c → TC_dx A R a c. +#A #R #a #b #c #Hab elim Hab -a -b /3 width=3/ +qed. + +lemma TC_to_TC_dx: ∀A. ∀R: relation A. + ∀a1,a2. TC … R a1 a2 → TC_dx … R a1 a2. +#A #R #a1 #a2 #Ha12 elim Ha12 -a2 /2 width=3/ +qed. + +lemma TC_dx_to_TC: ∀A. ∀R: relation A. + ∀a1,a2. TC_dx … R a1 a2 → TC … R a1 a2. +#A #R #a1 #a2 #Ha12 elim Ha12 -a1 -a2 /2 width=3/ +qed. + +fact TC_star_ind_dx_aux: ∀A,R. reflexive A R → + ∀a2. ∀P:predicate A. P a2 → + (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → + ∀a1,a. TC … R a1 a → a = a2 → P a1. +#A #R #HR #a2 #P #Ha2 #H #a1 #a #Ha1 +elim (TC_to_TC_dx ???? Ha1) -a1 -a +[ #a #c #Hac #H destruct /3 width=4/ +| #a #b #c #Hab #Hbc #IH #H destruct /3 width=4/ +] +qed-. + +lemma TC_star_ind_dx: ∀A,R. reflexive A R → + ∀a2. ∀P:predicate A. P a2 → + (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → + ∀a1. TC … R a1 a2 → P a1. +#A #R #HR #a2 #P #Ha2 #H #a1 #Ha12 +@(TC_star_ind_dx_aux … HR … Ha2 H … Ha12) // +qed-. + +definition Conf3: ∀A,B. relation2 A B → relation A → Prop ≝ λA,B,S,R. + ∀b,a1. S a1 b → ∀a2. R a1 a2 → S a2 b. + +lemma TC_Conf3: ∀A,B,S,R. Conf3 A B S R → Conf3 A B S (TC … R). +#A #B #S #R #HSR #b #a1 #Ha1 #a2 #H elim H -a2 /2 width=3/ +qed.