X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Fstar.ma;h=aafb3fa6be9174cde3f2914240066503666fc4ee;hb=53f874fba5b9c39a788085515a4fefe5d29281da;hp=8e850c697dc21b058684a6756207470cb84ad3ae;hpb=bb397726bff29389cdcb649a8c37484395b3b85e;p=helm.git diff --git a/matita/matita/lib/basics/star.ma b/matita/matita/lib/basics/star.ma index 8e850c697..aafb3fa6b 100644 --- a/matita/matita/lib/basics/star.ma +++ b/matita/matita/lib/basics/star.ma @@ -11,11 +11,47 @@ include "basics/relations.ma". -(********** relations **********) +(* transitive closcure (plus) *) +inductive TC (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ + |inj: ∀c. R a c → TC A R a c + |step : ∀b,c.TC A R a b → R b c → TC A R a c. + +theorem trans_TC: ∀A,R,a,b,c. + TC A R a b → TC A R b c → TC A R a c. +#A #R #a #b #c #Hab #Hbc (elim Hbc) /2/ +qed. + +theorem TC_idem: ∀A,R. exteqR … (TC A R) (TC A (TC A R)). +#A #R #a #b % /2/ #H (elim H) /2/ +qed. + +lemma monotonic_TC: ∀A,R,S. subR A R S → subR A (TC A R) (TC A S). +#A #R #S #subRS #a #b #H (elim H) /3/ +qed. + +lemma sub_TC: ∀A,R,S. subR A R (TC A S) → subR A (TC A R) (TC A S). +#A #R #S #Hsub #a #b #H (elim H) /3/ +qed. + +theorem sub_TC_to_eq: ∀A,R,S. subR A R S → subR A S (TC A R) → + exteqR … (TC A R) (TC A S). +#A #R #S #sub1 #sub2 #a #b % /2/ +qed. + +theorem TC_inv: ∀A,R. exteqR ?? (TC A (inv A R)) (inv A (TC A R)). +#A #R #a #b % +#H (elim H) /2/ normalize #c #d #H1 #H2 #H3 @(trans_TC … H3) /2/ +qed. + +(* star *) inductive star (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ - |inj: ∀b,c.star A R a b → R b c → star A R a c - |refl: star A R a a. + |sstep: ∀b,c.star A R a b → R b c → star A R a c + |srefl: star A R a a. + +lemma R_to_star: ∀A,R,a,b. R a b → star A R a b. +#A #R #a #b /2/ +qed. theorem trans_star: ∀A,R,a,b,c. star A R a b → star A R b c → star A R a c. @@ -26,8 +62,6 @@ theorem star_star: ∀A,R. exteqR … (star A R) (star A (star A R)). #A #R #a #b % /2/ #H (elim H) /2/ qed. -definition subR ≝ λA.λR,S:relation A.(∀a,b. R a b → S a b). - lemma monotonic_star: ∀A,R,S. subR A R S → subR A (star A R) (star A S). #A #R #S #subRS #a #b #H (elim H) /3/ qed. @@ -42,6 +76,72 @@ theorem sub_star_to_eq: ∀A,R,S. subR A R S → subR A S (star A R) → #A #R #S #sub1 #sub2 #a #b % /2/ qed. +theorem star_inv: ∀A,R. + exteqR ?? (star A (inv A R)) (inv A (star A R)). +#A #R #a #b % +#H (elim H) /2/ normalize #c #d #H1 #H2 #H3 @(trans_star … H3) /2/ +qed. + +lemma star_decomp_l : + ∀A,R,x,y.star A R x y → x = y ∨ ∃z.R x z ∧ star A R z y. +#A #R #x #y #Hstar elim Hstar +[ #b #c #Hleft #Hright * + [ #H1 %2 @(ex_intro ?? c) % // + | * #x0 * #H1 #H2 %2 @(ex_intro ?? x0) % /2/ ] +| /2/ ] +qed. + +(* right associative version of star *) +inductive starl (A:Type[0]) (R:relation A) : A → A → Prop ≝ + |sstepl: ∀a,b,c.R a b → starl A R b c → starl A R a c + |refll: ∀a.starl A R a a. + +lemma starl_comp : ∀A,R,a,b,c. + starl A R a b → R b c → starl A R a c. +#A #R #a #b #c #Hstar elim Hstar + [#a1 #b1 #c1 #Rab #sbc #Hind #a1 @(sstepl … Rab) @Hind // + |#a1 #Rac @(sstepl … Rac) // + ] +qed. + +lemma star_compl : ∀A,R,a,b,c. + R a b → star A R b c → star A R a c. +#A #R #a #b #c #Rab #Hstar elim Hstar + [#b1 #c1 #sbb1 #Rb1c1 #Hind @(sstep … Rb1c1) @Hind + |@(sstep … Rab) // + ] +qed. + +lemma star_to_starl: ∀A,R,a,b.star A R a b → starl A R a b. +#A #R #a #b #Hs elim Hs // +#d #c #sad #Rdc #sad @(starl_comp … Rdc) // +qed. + +lemma starl_to_star: ∀A,R,a,b.starl A R a b → star A R a b. +#A #R #a #b #Hs elim Hs // -Hs -b -a +#a #b #c #Rab #sbc #sbc @(star_compl … Rab) // +qed. + +lemma star_ind_l : + ∀A:Type[0].∀R:relation A.∀Q:A → A → Prop. + (∀a.Q a a) → + (∀a,b,c.R a b → star A R b c → Q b c → Q a c) → + ∀a,b.star A R a b → Q a b. +#A #R #Q #H1 #H2 #a #b #H0 +elim (star_to_starl ???? H0) // -H0 -b -a +#a #b #c #Rab #slbc @H2 // @starl_to_star // +qed. + +(* RC and star *) + +lemma TC_to_star: ∀A,R,a,b.TC A R a b → star A R a b. +#R #A #a #b #TCH (elim TCH) /2/ +qed. + +lemma star_case: ∀A,R,a,b. star A R a b → a = b ∨ TC A R a b. +#A #R #a #b #H (elim H) /2/ #c #d #star_ac #Rcd * #H1 %2 /2/. +qed. + (* equiv -- smallest equivalence relation containing R *) inductive equiv (A:Type[0]) (R:relation A) : A → A → Prop ≝ @@ -51,7 +151,7 @@ inductive equiv (A:Type[0]) (R:relation A) : A → A → Prop ≝ theorem trans_equiv: ∀A,R,a,b,c. equiv A R a b → equiv A R b c → equiv A R a c. -#A #R #a #b #c #Hab #Hbc (inversion Hbc) /2/ +#A #R #a #b #c #Hab #Hbc (elim Hbc) /2/ qed. theorem equiv_equiv: ∀A,R. exteqR … (equiv A R) (equiv A (equiv A R)). @@ -83,3 +183,231 @@ lemma WF_antimonotonic: ∀A,R,S. subR A R S → #H #Hind % #c #Rcb @Hind @subRS // qed. +(* added from lambda_delta *) + +lemma TC_strap: ∀A. ∀R:relation A. ∀a1,a,a2. + R a1 a → TC … R a a2 → TC … R a1 a2. +/3 width=3/ qed. + +lemma TC_reflexive: ∀A,R. reflexive A R → reflexive A (TC … R). +/2 width=1/ qed. + +lemma TC_star_ind: ∀A,R. reflexive A R → ∀a1. ∀P:predicate A. + P a1 → (∀a,a2. TC … R a1 a → R a a2 → P a → P a2) → + ∀a2. TC … R a1 a2 → P a2. +#A #R #H #a1 #P #Ha1 #IHa1 #a2 #Ha12 elim Ha12 -a2 /3 width=4/ +qed-. + +inductive TC_dx (A:Type[0]) (R:relation A): A → A → Prop ≝ + |inj_dx: ∀a,c. R a c → TC_dx A R a c + |step_dx : ∀a,b,c. R a b → TC_dx A R b c → TC_dx A R a c. + +lemma TC_dx_strap: ∀A. ∀R: relation A. + ∀a,b,c. TC_dx A R a b → R b c → TC_dx A R a c. +#A #R #a #b #c #Hab elim Hab -a -b /3 width=3/ +qed. + +lemma TC_to_TC_dx: ∀A. ∀R: relation A. + ∀a1,a2. TC … R a1 a2 → TC_dx … R a1 a2. +#A #R #a1 #a2 #Ha12 elim Ha12 -a2 /2 width=3/ +qed. + +lemma TC_dx_to_TC: ∀A. ∀R: relation A. + ∀a1,a2. TC_dx … R a1 a2 → TC … R a1 a2. +#A #R #a1 #a2 #Ha12 elim Ha12 -a1 -a2 /2 width=3/ +qed. + +fact TC_ind_dx_aux: ∀A,R,a2. ∀P:predicate A. + (∀a1. R a1 a2 → P a1) → + (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → + ∀a1,a. TC … R a1 a → a = a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #a #Ha1 +elim (TC_to_TC_dx ???? Ha1) -a1 -a +[ #a #c #Hac #H destruct /2 width=1/ +| #a #b #c #Hab #Hbc #IH #H destruct /3 width=4/ +] +qed-. + +lemma TC_ind_dx: ∀A,R,a2. ∀P:predicate A. + (∀a1. R a1 a2 → P a1) → + (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → + ∀a1. TC … R a1 a2 → P a1. +#A #R #a2 #P #H1 #H2 #a1 #Ha12 +@(TC_ind_dx_aux … H1 H2 … Ha12) // +qed-. + +lemma TC_symmetric: ∀A,R. symmetric A R → symmetric A (TC … R). +#A #R #HR #x #y #H @(TC_ind_dx ??????? H) -x /3 width=1/ /3 width=3/ +qed. + +lemma TC_star_ind_dx: ∀A,R. reflexive A R → + ∀a2. ∀P:predicate A. P a2 → + (∀a1,a. R a1 a → TC … R a a2 → P a → P a1) → + ∀a1. TC … R a1 a2 → P a1. +#A #R #HR #a2 #P #Ha2 #H #a1 #Ha12 +@(TC_ind_dx … P ? H … Ha12) /3 width=4/ +qed-. + +definition Conf3: ∀A,B. relation2 A B → relation A → Prop ≝ λA,B,S,R. + ∀b,a1. S a1 b → ∀a2. R a1 a2 → S a2 b. + +lemma TC_Conf3: ∀A,B,S,R. Conf3 A B S R → Conf3 A B S (TC … R). +#A #B #S #R #HSR #b #a1 #Ha1 #a2 #H elim H -a2 /2 width=3/ +qed. + +inductive bi_TC (A,B:Type[0]) (R:bi_relation A B) (a:A) (b:B): relation2 A B ≝ + |bi_inj : ∀c,d. R a b c d → bi_TC A B R a b c d + |bi_step: ∀c,d,e,f. bi_TC A B R a b c d → R c d e f → bi_TC A B R a b e f. + +lemma bi_TC_strap: ∀A,B. ∀R:bi_relation A B. ∀a1,a,a2,b1,b,b2. + R a1 b1 a b → bi_TC … R a b a2 b2 → bi_TC … R a1 b1 a2 b2. +#A #B #R #a1 #a #a2 #b1 #b #b2 #HR #H elim H -a2 -b2 /2 width=4/ /3 width=4/ +qed. + +lemma bi_TC_reflexive: ∀A,B,R. bi_reflexive A B R → + bi_reflexive A B (bi_TC … R). +/2 width=1/ qed. + +inductive bi_TC_dx (A,B:Type[0]) (R:bi_relation A B): bi_relation A B ≝ + |bi_inj_dx : ∀a1,a2,b1,b2. R a1 b1 a2 b2 → bi_TC_dx A B R a1 b1 a2 b2 + |bi_step_dx : ∀a1,a,a2,b1,b,b2. R a1 b1 a b → bi_TC_dx A B R a b a2 b2 → + bi_TC_dx A B R a1 b1 a2 b2. + +lemma bi_TC_dx_strap: ∀A,B. ∀R: bi_relation A B. + ∀a1,a,a2,b1,b,b2. bi_TC_dx A B R a1 b1 a b → + R a b a2 b2 → bi_TC_dx A B R a1 b1 a2 b2. +#A #B #R #a1 #a #a2 #b1 #b #b2 #H1 elim H1 -a -b /3 width=4/ +qed. + +lemma bi_TC_to_bi_TC_dx: ∀A,B. ∀R: bi_relation A B. + ∀a1,a2,b1,b2. bi_TC … R a1 b1 a2 b2 → + bi_TC_dx … R a1 b1 a2 b2. +#A #B #R #a1 #a2 #b1 #b2 #H12 elim H12 -a2 -b2 /2 width=4/ +qed. + +lemma bi_TC_dx_to_bi_TC: ∀A,B. ∀R: bi_relation A B. + ∀a1,a2,b1,b2. bi_TC_dx … R a1 b1 a2 b2 → + bi_TC … R a1 b1 a2 b2. +#A #b #R #a1 #a2 #b1 #b2 #H12 elim H12 -a1 -a2 -b1 -b2 /2 width=4/ +qed. + +fact bi_TC_ind_dx_aux: ∀A,B,R,a2,b2. ∀P:relation2 A B. + (∀a1,b1. R a1 b1 a2 b2 → P a1 b1) → + (∀a1,a,b1,b. R a1 b1 a b → bi_TC … R a b a2 b2 → P a b → P a1 b1) → + ∀a1,a,b1,b. bi_TC … R a1 b1 a b → a = a2 → b = b2 → P a1 b1. +#A #B #R #a2 #b2 #P #H1 #H2 #a1 #a #b1 #b #H1 +elim (bi_TC_to_bi_TC_dx ??????? H1) -a1 -a -b1 -b +[ #a1 #x #b1 #y #H1 #Hx #Hy destruct /2 width=1/ +| #a1 #a #x #b1 #b #y #H1 #H #IH #Hx #Hy destruct /3 width=5/ +] +qed-. + +lemma bi_TC_ind_dx: ∀A,B,R,a2,b2. ∀P:relation2 A B. + (∀a1,b1. R a1 b1 a2 b2 → P a1 b1) → + (∀a1,a,b1,b. R a1 b1 a b → bi_TC … R a b a2 b2 → P a b → P a1 b1) → + ∀a1,b1. bi_TC … R a1 b1 a2 b2 → P a1 b1. +#A #B #R #a2 #b2 #P #H1 #H2 #a1 #b1 #H12 +@(bi_TC_ind_dx_aux ?????? H1 H2 … H12) // +qed-. + +lemma bi_TC_symmetric: ∀A,B,R. bi_symmetric A B R → + bi_symmetric A B (bi_TC … R). +#A #B #R #HR #a1 #a2 #b1 #b2 #H21 +@(bi_TC_ind_dx ?????????? H21) -a2 -b2 /3 width=1/ /3 width=4/ +qed. + +lemma bi_TC_transitive: ∀A,B,R. bi_transitive A B (bi_TC … R). +#A #B #R #a1 #a #b1 #b #H elim H -a -b /2 width=4/ /3 width=4/ +qed. + +definition bi_Conf3: ∀A,B,C. relation3 A B C → bi_relation A B → Prop ≝ λA,B,C,S,R. + ∀c,a1,b1. S a1 b1 c → ∀a2,b2. R a1 b1 a2 b2 → S a2 b2 c. + +lemma bi_TC_Conf3: ∀A,B,C,S,R. bi_Conf3 A B C S R → bi_Conf3 A B C S (bi_TC … R). +#A #B #C #S #R #HSR #c #a1 #b1 #Hab1 #a2 #b2 #H elim H -a2 -b2 /2 width=4/ +qed. + +lemma bi_TC_star_ind: ∀A,B,R. bi_reflexive A B R → ∀a1,b1. ∀P:relation2 A B. + P a1 b1 → (∀a,a2,b,b2. bi_TC … R a1 b1 a b → R a b a2 b2 → P a b → P a2 b2) → + ∀a2,b2. bi_TC … R a1 b1 a2 b2 → P a2 b2. +#A #B #R #HR #a1 #b1 #P #H1 #IH #a2 #b2 #H12 elim H12 -a2 -b2 /3 width=5/ +qed-. + +lemma bi_TC_star_ind_dx: ∀A,B,R. bi_reflexive A B R → + ∀a2,b2. ∀P:relation2 A B. P a2 b2 → + (∀a1,a,b1,b. R a1 b1 a b → bi_TC … R a b a2 b2 → P a b → P a1 b1) → + ∀a1,b1. bi_TC … R a1 b1 a2 b2 → P a1 b1. +#A #B #R #HR #a2 #b2 #P #H2 #IH #a1 #b1 #H12 +@(bi_TC_ind_dx … P ? IH … H12) /3 width=5/ +qed-. + +definition bi_star: ∀A,B,R. bi_relation A B ≝ λA,B,R,a1,b1,a2,b2. + (a1 = a2 ∧ b1 = b2) ∨ bi_TC A B R a1 b1 a2 b2. + +lemma bi_star_bi_reflexive: ∀A,B,R. bi_reflexive A B (bi_star … R). +/3 width=1/ qed. + +lemma bi_TC_to_bi_star: ∀A,B,R,a1,b1,a2,b2. + bi_TC A B R a1 b1 a2 b2 → bi_star A B R a1 b1 a2 b2. +/2 width=1/ qed. + +lemma bi_R_to_bi_star: ∀A,B,R,a1,b1,a2,b2. + R a1 b1 a2 b2 → bi_star A B R a1 b1 a2 b2. +/3 width=1/ qed. + +lemma bi_star_strap1: ∀A,B,R,a1,a,a2,b1,b,b2. bi_star A B R a1 b1 a b → + R a b a2 b2 → bi_star A B R a1 b1 a2 b2. +#A #B #R #a1 #a #a2 #b1 #b #b2 * +[ * #H1 #H2 destruct /2 width=1/ +| /3 width=4/ +] +qed. + +lemma bi_star_strap2: ∀A,B,R,a1,a,a2,b1,b,b2. R a1 b1 a b → + bi_star A B R a b a2 b2 → bi_star A B R a1 b1 a2 b2. +#A #B #R #a1 #a #a2 #b1 #b #b2 #H * +[ * #H1 #H2 destruct /2 width=1/ +| /3 width=4/ +] +qed. + +lemma bi_star_to_bi_TC_to_bi_TC: ∀A,B,R,a1,a,a2,b1,b,b2. bi_star A B R a1 b1 a b → + bi_TC A B R a b a2 b2 → bi_TC A B R a1 b1 a2 b2. +#A #B #R #a1 #a #a2 #b1 #b #b2 * +[ * #H1 #H2 destruct /2 width=1/ +| /2 width=4/ +] +qed. + +lemma bi_TC_to_bi_star_to_bi_TC: ∀A,B,R,a1,a,a2,b1,b,b2. bi_TC A B R a1 b1 a b → + bi_star A B R a b a2 b2 → bi_TC A B R a1 b1 a2 b2. +#A #B #R #a1 #a #a2 #b1 #b #b2 #H * +[ * #H1 #H2 destruct /2 width=1/ +| /2 width=4/ +] +qed. + +lemma bi_tansitive_bi_star: ∀A,B,R. bi_transitive A B (bi_star … R). +#A #B #R #a1 #a #b1 #b #H #a2 #b2 * +[ * #H1 #H2 destruct /2 width=1/ +| /3 width=4/ +] +qed. + +lemma bi_star_ind: ∀A,B,R,a1,b1. ∀P:relation2 A B. P a1 b1 → + (∀a,a2,b,b2. bi_star … R a1 b1 a b → R a b a2 b2 → P a b → P a2 b2) → + ∀a2,b2. bi_star … R a1 b1 a2 b2 → P a2 b2. +#A #B #R #a1 #b1 #P #H #IH #a2 #b2 * +[ * #H1 #H2 destruct // +| #H12 elim H12 -a2 -b2 /2 width=5/ -H /3 width=5/ +] +qed-. + +lemma bi_star_ind_dx: ∀A,B,R,a2,b2. ∀P:relation2 A B. P a2 b2 → + (∀a1,a,b1,b. R a1 b1 a b → bi_star … R a b a2 b2 → P a b → P a1 b1) → + ∀a1,b1. bi_star … R a1 b1 a2 b2 → P a1 b1. +#A #B #R #a2 #b2 #P #H #IH #a1 #b1 * +[ * #H1 #H2 destruct // +| #H12 @(bi_TC_ind_dx ?????????? H12) -a1 -b1 /2 width=5/ -H /3 width=5/ +] +qed-.