X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Fstar.ma;h=d17dcca7ec4fc727e5503e75f21cc0be8d3e0ca8;hb=94188b0cbaff6340464d90cc13ee246ea7ec3284;hp=8e850c697dc21b058684a6756207470cb84ad3ae;hpb=bb397726bff29389cdcb649a8c37484395b3b85e;p=helm.git diff --git a/matita/matita/lib/basics/star.ma b/matita/matita/lib/basics/star.ma index 8e850c697..d17dcca7e 100644 --- a/matita/matita/lib/basics/star.ma +++ b/matita/matita/lib/basics/star.ma @@ -13,10 +13,52 @@ include "basics/relations.ma". (********** relations **********) +definition subR ≝ λA.λR,S:relation A.(∀a,b. R a b → S a b). + +definition inv ≝ λA.λR:relation A.λa,b.R b a. + +(* transitive closcure (plus) *) + +inductive TC (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ + |inj: ∀c. R a c → TC A R a c + |step : ∀b,c.TC A R a b → R b c → TC A R a c. + +theorem trans_TC: ∀A,R,a,b,c. + TC A R a b → TC A R b c → TC A R a c. +#A #R #a #b #c #Hab #Hbc (elim Hbc) /2/ +qed. + +theorem TC_idem: ∀A,R. exteqR … (TC A R) (TC A (TC A R)). +#A #R #a #b % /2/ #H (elim H) /2/ +qed. + +lemma monotonic_TC: ∀A,R,S. subR A R S → subR A (TC A R) (TC A S). +#A #R #S #subRS #a #b #H (elim H) /3/ +qed. + +lemma sub_TC: ∀A,R,S. subR A R (TC A S) → subR A (TC A R) (TC A S). +#A #R #S #Hsub #a #b #H (elim H) /3/ +qed. + +theorem sub_TC_to_eq: ∀A,R,S. subR A R S → subR A S (TC A R) → + exteqR … (TC A R) (TC A S). +#A #R #S #sub1 #sub2 #a #b % /2/ +qed. + +theorem TC_inv: ∀A,R. exteqR ?? (TC A (inv A R)) (inv A (TC A R)). +#A #R #a #b % +#H (elim H) /2/ normalize #c #d #H1 #H2 #H3 @(trans_TC … H3) /2/ +qed. + +(* star *) inductive star (A:Type[0]) (R:relation A) (a:A): A → Prop ≝ |inj: ∀b,c.star A R a b → R b c → star A R a c |refl: star A R a a. +lemma R_to_star: ∀A,R,a,b. R a b → star A R a b. +#A #R #a #b /2/ +qed. + theorem trans_star: ∀A,R,a,b,c. star A R a b → star A R b c → star A R a c. #A #R #a #b #c #Hab #Hbc (elim Hbc) /2/ @@ -26,8 +68,6 @@ theorem star_star: ∀A,R. exteqR … (star A R) (star A (star A R)). #A #R #a #b % /2/ #H (elim H) /2/ qed. -definition subR ≝ λA.λR,S:relation A.(∀a,b. R a b → S a b). - lemma monotonic_star: ∀A,R,S. subR A R S → subR A (star A R) (star A S). #A #R #S #subRS #a #b #H (elim H) /3/ qed. @@ -42,6 +82,22 @@ theorem sub_star_to_eq: ∀A,R,S. subR A R S → subR A S (star A R) → #A #R #S #sub1 #sub2 #a #b % /2/ qed. +theorem star_inv: ∀A,R. + exteqR ?? (star A (inv A R)) (inv A (star A R)). +#A #R #a #b % +#H (elim H) /2/ normalize #c #d #H1 #H2 #H3 @(trans_star … H3) /2/ +qed. + +(* RC and star *) + +lemma TC_to_star: ∀A,R,a,b.TC A R a b → star A R a b. +#R #A #a #b #TCH (elim TCH) /2/ +qed. + +lemma star_case: ∀A,R,a,b. star A R a b → a = b ∨ TC A R a b. +#A #R #a #b #H (elim H) /2/ #c #d #star_ac #Rcd * #H1 %2 /2/. +qed. + (* equiv -- smallest equivalence relation containing R *) inductive equiv (A:Type[0]) (R:relation A) : A → A → Prop ≝ @@ -51,7 +107,7 @@ inductive equiv (A:Type[0]) (R:relation A) : A → A → Prop ≝ theorem trans_equiv: ∀A,R,a,b,c. equiv A R a b → equiv A R b c → equiv A R a c. -#A #R #a #b #c #Hab #Hbc (inversion Hbc) /2/ +#A #R #a #b #c #Hab #Hbc (elim Hbc) /2/ qed. theorem equiv_equiv: ∀A,R. exteqR … (equiv A R) (equiv A (equiv A R)).