X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Ftypes.ma;h=efc213f95da759cb305ef3d1522ee13691de78e0;hb=dbc57c92512c04b3fd88f8289bb8dbe99b2f90e0;hp=697cf10a4c309216791e30b2aba32f8caa2714cf;hpb=869417c848f0b4dac21ead718149ed36c2fa560f;p=helm.git diff --git a/matita/matita/lib/basics/types.ma b/matita/matita/lib/basics/types.ma index 697cf10a4..efc213f95 100644 --- a/matita/matita/lib/basics/types.ma +++ b/matita/matita/lib/basics/types.ma @@ -9,6 +9,7 @@ \ / GNU General Public License Version 2 V_______________________________________________________________ *) +include "basics/core_notation/pair_2.ma". include "basics/logic.ma". (* void *) @@ -29,12 +30,59 @@ inductive option (A:Type[0]) : Type[0] ≝ None : option A | Some : A → option A. +definition option_map : ∀A,B:Type[0]. (A → B) → option A → option B ≝ +λA,B,f,o. match o with [ None ⇒ None B | Some a ⇒ Some B (f a) ]. + +lemma option_map_none : ∀A,B,f,x. + option_map A B f x = None B → x = None A. +#A #B #f * [ // | #a #E whd in E:(??%?); destruct ] +qed. + +lemma option_map_some : ∀A,B,f,x,v. + option_map A B f x = Some B v → ∃y. x = Some ? y ∧ f y = v. +#A #B #f * +[ #v normalize #E destruct +| #y #v normalize #E %{y} destruct % // +] qed. + +definition option_map_def : ∀A,B:Type[0]. (A → B) → B → option A → B ≝ +λA,B,f,d,o. match o with [ None ⇒ d | Some a ⇒ f a ]. + +lemma refute_none_by_refl : ∀A,B:Type[0]. ∀P:A → B. ∀Q:B → Type[0]. ∀x:option A. ∀H:x = None ? → False. + (∀v. x = Some ? v → Q (P v)) → + Q (match x return λy.x = y → ? with [ Some v ⇒ λ_. P v | None ⇒ λE. match H E in False with [ ] ] (refl ? x)). +#A #B #P #Q * +[ #H cases (H (refl ??)) +| #a #H #p normalize @p @refl +] qed. + +(* dependent pair *) +record DPair (A:Type[0]) (f:A→Type[0]) : Type[0] ≝ { + dpi1:> A + ; dpi2: f dpi1 + }. + +interpretation "DPair" 'dpair x = (DPair ? x). + +interpretation "mk_DPair" 'mk_DPair x y = (mk_DPair ?? x y). + (* sigma *) -inductive Sig (A:Type[0]) (f:A→Type[0]) : Type[0] ≝ - dp: ∀a:A.(f a)→Sig A f. +record Sig (A:Type[0]) (f:A→Prop) : Type[0] ≝ { + pi1: A (* not a coercion due to problems with Cerco *) + ; pi2: f pi1 + }. interpretation "Sigma" 'sigma x = (Sig ? x). +interpretation "mk_Sig" 'dp x y = (mk_Sig ?? x y). + +lemma sub_pi2 : ∀A.∀P,P':A → Prop. (∀x.P x → P' x) → ∀x:Σx:A.P x. P' (pi1 … x). +#A #P #P' #H1 * #x #H2 @H1 @H2 +qed. + +lemma inj_mk_Sig: ∀A,P.∀x. x = mk_Sig A P (pi1 A P x) (pi2 A P x). +#A #P #x cases x // +qed-. (* Prod *) record Prod (A,B:Type[0]) : Type[0] ≝ { @@ -101,15 +149,15 @@ for @{ match $t return λx.x = $t → ? with [ mk_Prod ${fresh xy} ${ident z} match ${fresh xy} return λx. ? = $t → ? with [ mk_Prod ${ident x} ${ident y} ⇒ λ${ident E}.$s ] ] (refl ? $t) }. -notation < "hvbox('let' \nbsp hvbox(〈ident x,ident y,ident z〉 \nbsp'as'\nbsp ident E\nbsp ≝ break t \nbsp 'in' \nbsp) break s)" +notation < "hvbox('let' \nbsp hvbox(〈ident x,ident y,ident z〉 \nbsp 'as' \nbsp ident E\nbsp ≝ break t \nbsp 'in' \nbsp) break s)" with precedence 10 -for @{ match $t return λ${ident x}.$eq $T $x $t → $U with [ mk_Prod (${fresh xy}:$V) (${ident z}:$Z) ⇒ - match ${fresh xy} return λ${ident y}. $eq $R $r $t → ? with [ mk_Prod (${ident x}:$L) (${ident y}:$I) ⇒ +for @{ match $t return λ${ident k}:$X.$eq $T $k $t → $U with [ mk_Prod (${ident xy}:$V) (${ident z}:$Z) ⇒ + match $xy return λ${ident a}. $eq $R $r $t → ? with [ mk_Prod (${ident x}:$L) (${ident y}:$I) ⇒ λ${ident E}:$J.$s ] ] ($refl $A $t) }. notation > "hvbox('let' 〈ident w,ident x,ident y,ident z〉 ≝ t 'in' s)" with precedence 10 -for @{ match $t with [ mk_Prod ${fresh wx} ${fresh yz} ⇒ match ${fresh wx} with [ mk_Prod ${ident w} ${ident x} ⇒ match ${fresh yz} with [ pair ${ident y} ${ident z} ⇒ $s ] ] ] }. +for @{ match $t with [ mk_Prod ${fresh wx} ${fresh yz} ⇒ match ${fresh wx} with [ mk_Prod ${ident w} ${ident x} ⇒ match ${fresh yz} with [ mk_Prod ${ident y} ${ident z} ⇒ $s ] ] ] }. notation > "hvbox('let' 〈ident x,ident y,ident z〉 ≝ t 'in' s)" with precedence 10 @@ -170,3 +218,10 @@ lemma pair_destruct_2: ∀A,B.∀a:A.∀b:B.∀c. 〈a,b〉 = c → b = \snd c. #A #B #a #b *; /2/ qed. + +lemma coerc_pair_sigma: + ∀A,B,P. ∀p:A × B. P (\snd p) → A × (Σx:B.P x). +#A #B #P * #a #b #p % [@a | /2/] +qed. +coercion coerc_pair_sigma:∀A,B,P. ∀p:A × B. P (\snd p) → A × (Σx:B.P x) +≝ coerc_pair_sigma on p: (? × ?) to (? × (Sig ??)).