X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fbasics%2Ftypes.ma;h=efc213f95da759cb305ef3d1522ee13691de78e0;hb=dbc57c92512c04b3fd88f8289bb8dbe99b2f90e0;hp=c14cc60b4bf4f32ef21f34965932982f2fafdc44;hpb=53452958508001e7af3090695b619fe92135fb9e;p=helm.git diff --git a/matita/matita/lib/basics/types.ma b/matita/matita/lib/basics/types.ma index c14cc60b4..efc213f95 100644 --- a/matita/matita/lib/basics/types.ma +++ b/matita/matita/lib/basics/types.ma @@ -9,6 +9,7 @@ \ / GNU General Public License Version 2 V_______________________________________________________________ *) +include "basics/core_notation/pair_2.ma". include "basics/logic.ma". (* void *) @@ -17,19 +18,81 @@ inductive void : Type[0] ≝. (* unit *) inductive unit : Type[0] ≝ it: unit. -(* Prod *) -inductive Prod (A,B:Type[0]) : Type[0] ≝ -pair : A → B → Prod A B. +(* sum *) +inductive Sum (A,B:Type[0]) : Type[0] ≝ + inl : A → Sum A B +| inr : B → Sum A B. -interpretation "Pair construction" 'pair x y = (pair ? ? x y). +interpretation "Disjoint union" 'plus A B = (Sum A B). -interpretation "Product" 'product x y = (Prod x y). +(* option *) +inductive option (A:Type[0]) : Type[0] ≝ + None : option A + | Some : A → option A. + +definition option_map : ∀A,B:Type[0]. (A → B) → option A → option B ≝ +λA,B,f,o. match o with [ None ⇒ None B | Some a ⇒ Some B (f a) ]. + +lemma option_map_none : ∀A,B,f,x. + option_map A B f x = None B → x = None A. +#A #B #f * [ // | #a #E whd in E:(??%?); destruct ] +qed. + +lemma option_map_some : ∀A,B,f,x,v. + option_map A B f x = Some B v → ∃y. x = Some ? y ∧ f y = v. +#A #B #f * +[ #v normalize #E destruct +| #y #v normalize #E %{y} destruct % // +] qed. + +definition option_map_def : ∀A,B:Type[0]. (A → B) → B → option A → B ≝ +λA,B,f,d,o. match o with [ None ⇒ d | Some a ⇒ f a ]. -definition fst ≝ λA,B.λp:A × B. - match p with [pair a b ⇒ a]. +lemma refute_none_by_refl : ∀A,B:Type[0]. ∀P:A → B. ∀Q:B → Type[0]. ∀x:option A. ∀H:x = None ? → False. + (∀v. x = Some ? v → Q (P v)) → + Q (match x return λy.x = y → ? with [ Some v ⇒ λ_. P v | None ⇒ λE. match H E in False with [ ] ] (refl ? x)). +#A #B #P #Q * +[ #H cases (H (refl ??)) +| #a #H #p normalize @p @refl +] qed. -definition snd ≝ λA,B.λp:A × B. - match p with [pair a b ⇒ b]. +(* dependent pair *) +record DPair (A:Type[0]) (f:A→Type[0]) : Type[0] ≝ { + dpi1:> A + ; dpi2: f dpi1 + }. + +interpretation "DPair" 'dpair x = (DPair ? x). + +interpretation "mk_DPair" 'mk_DPair x y = (mk_DPair ?? x y). + +(* sigma *) +record Sig (A:Type[0]) (f:A→Prop) : Type[0] ≝ { + pi1: A (* not a coercion due to problems with Cerco *) + ; pi2: f pi1 + }. + +interpretation "Sigma" 'sigma x = (Sig ? x). + +interpretation "mk_Sig" 'dp x y = (mk_Sig ?? x y). + +lemma sub_pi2 : ∀A.∀P,P':A → Prop. (∀x.P x → P' x) → ∀x:Σx:A.P x. P' (pi1 … x). +#A #P #P' #H1 * #x #H2 @H1 @H2 +qed. + +lemma inj_mk_Sig: ∀A,P.∀x. x = mk_Sig A P (pi1 A P x) (pi2 A P x). +#A #P #x cases x // +qed-. +(* Prod *) + +record Prod (A,B:Type[0]) : Type[0] ≝ { + fst: A + ; snd: B + }. + +interpretation "Pair construction" 'pair x y = (mk_Prod ? ? x y). + +interpretation "Product" 'product x y = (Prod x y). interpretation "pair pi1" 'pi1 = (fst ? ?). interpretation "pair pi2" 'pi2 = (snd ? ?). @@ -38,22 +101,127 @@ interpretation "pair pi2" 'pi2a x = (snd ? ? x). interpretation "pair pi1" 'pi1b x y = (fst ? ? x y). interpretation "pair pi2" 'pi2b x y = (snd ? ? x y). +notation "π1" with precedence 10 for @{ (proj1 ??) }. +notation "π2" with precedence 10 for @{ (proj2 ??) }. + +(* Yeah, I probably ought to do something more general... *) +notation "hvbox(\langle term 19 a, break term 19 b, break term 19 c\rangle)" +with precedence 90 for @{ 'triple $a $b $c}. +interpretation "Triple construction" 'triple x y z = (mk_Prod ? ? (mk_Prod ? ? x y) z). + +notation "hvbox(\langle term 19 a, break term 19 b, break term 19 c, break term 19 d\rangle)" +with precedence 90 for @{ 'quadruple $a $b $c $d}. +interpretation "Quadruple construction" 'quadruple w x y z = (mk_Prod ? ? (mk_Prod ? ? w x) (mk_Prod ? ? y z)). + + theorem eq_pair_fst_snd: ∀A,B.∀p:A × B. p = 〈 \fst p, \snd p 〉. #A #B #p (cases p) // qed. -(* sum *) -inductive Sum (A,B:Type[0]) : Type[0] ≝ - inl : A → Sum A B -| inr : B → Sum A B. +lemma fst_eq : ∀A,B.∀a:A.∀b:B. \fst 〈a,b〉 = a. +// qed. -interpretation "Disjoint union" 'plus A B = (Sum A B). +lemma snd_eq : ∀A,B.∀a:A.∀b:B. \snd 〈a,b〉 = b. +// qed. -(* option *) -inductive option (A:Type[0]) : Type[0] ≝ - None : option A - | Some : A → option A. +notation > "hvbox('let' 〈ident x,ident y〉 ≝ t 'in' s)" + with precedence 10 +for @{ match $t with [ mk_Prod ${ident x} ${ident y} ⇒ $s ] }. -(* sigma *) -inductive Sig (A:Type[0]) (f:A→Type[0]) : Type[0] ≝ - dp: ∀a:A.(f a)→Sig A f. \ No newline at end of file +notation < "hvbox('let' \nbsp hvbox(〈ident x,ident y〉 \nbsp≝ break t \nbsp 'in' \nbsp) break s)" + with precedence 10 +for @{ match $t with [ mk_Prod (${ident x}:$X) (${ident y}:$Y) ⇒ $s ] }. + +(* Also extracts an equality proof (useful when not using Russell). *) +notation > "hvbox('let' 〈ident x,ident y〉 'as' ident E ≝ t 'in' s)" + with precedence 10 +for @{ match $t return λx.x = $t → ? with [ mk_Prod ${ident x} ${ident y} ⇒ + λ${ident E}.$s ] (refl ? $t) }. + +notation < "hvbox('let' \nbsp hvbox(〈ident x,ident y〉 \nbsp 'as'\nbsp ident E\nbsp ≝ break t \nbsp 'in' \nbsp) break s)" + with precedence 10 +for @{ match $t return λ${ident k}:$X.$eq $T $k $t → ? with [ mk_Prod (${ident x}:$U) (${ident y}:$W) ⇒ + λ${ident E}:$e.$s ] ($refl $T $t) }. + +notation > "hvbox('let' 〈ident x,ident y,ident z〉 'as' ident E ≝ t 'in' s)" + with precedence 10 +for @{ match $t return λx.x = $t → ? with [ mk_Prod ${fresh xy} ${ident z} ⇒ + match ${fresh xy} return λx. ? = $t → ? with [ mk_Prod ${ident x} ${ident y} ⇒ + λ${ident E}.$s ] ] (refl ? $t) }. + +notation < "hvbox('let' \nbsp hvbox(〈ident x,ident y,ident z〉 \nbsp 'as' \nbsp ident E\nbsp ≝ break t \nbsp 'in' \nbsp) break s)" + with precedence 10 +for @{ match $t return λ${ident k}:$X.$eq $T $k $t → $U with [ mk_Prod (${ident xy}:$V) (${ident z}:$Z) ⇒ + match $xy return λ${ident a}. $eq $R $r $t → ? with [ mk_Prod (${ident x}:$L) (${ident y}:$I) ⇒ + λ${ident E}:$J.$s ] ] ($refl $A $t) }. + +notation > "hvbox('let' 〈ident w,ident x,ident y,ident z〉 ≝ t 'in' s)" + with precedence 10 +for @{ match $t with [ mk_Prod ${fresh wx} ${fresh yz} ⇒ match ${fresh wx} with [ mk_Prod ${ident w} ${ident x} ⇒ match ${fresh yz} with [ mk_Prod ${ident y} ${ident z} ⇒ $s ] ] ] }. + +notation > "hvbox('let' 〈ident x,ident y,ident z〉 ≝ t 'in' s)" + with precedence 10 +for @{ match $t with [ mk_Prod ${fresh xy} ${ident z} ⇒ match ${fresh xy} with [ mk_Prod ${ident x} ${ident y} ⇒ $s ] ] }. + +(* This appears to upset automation (previously provable results require greater + depth or just don't work), so use example rather than lemma to prevent it + being indexed. *) +example contract_pair : ∀A,B.∀e:A×B. (let 〈a,b〉 ≝ e in 〈a,b〉) = e. +#A #B * // qed. + +lemma extract_pair : ∀A,B,C,D. ∀u:A×B. ∀Q:A → B → C×D. ∀x,y. +((let 〈a,b〉 ≝ u in Q a b) = 〈x,y〉) → +∃a,b. 〈a,b〉 = u ∧ Q a b = 〈x,y〉. +#A #B #C #D * #a #b #Q #x #y normalize #E1 %{a} %{b} % try @refl @E1 qed. + +lemma breakup_pair : ∀A,B,C:Type[0].∀x. ∀R:C → Prop. ∀P:A → B → C. + R (P (\fst x) (\snd x)) → R (let 〈a,b〉 ≝ x in P a b). +#A #B #C *; normalize /2/ +qed. + +lemma pair_elim: + ∀A,B,C: Type[0]. + ∀T: A → B → C. + ∀p. + ∀P: A×B → C → Prop. + (∀lft, rgt. p = 〈lft,rgt〉 → P 〈lft,rgt〉 (T lft rgt)) → + P p (let 〈lft, rgt〉 ≝ p in T lft rgt). + #A #B #C #T * /2/ +qed. + +lemma pair_elim2: + ∀A,B,C,C': Type[0]. + ∀T: A → B → C. + ∀T': A → B → C'. + ∀p. + ∀P: A×B → C → C' → Prop. + (∀lft, rgt. p = 〈lft,rgt〉 → P 〈lft,rgt〉 (T lft rgt) (T' lft rgt)) → + P p (let 〈lft, rgt〉 ≝ p in T lft rgt) (let 〈lft, rgt〉 ≝ p in T' lft rgt). + #A #B #C #C' #T #T' * /2/ +qed. + +(* Useful for avoiding destruct's full normalization. *) +lemma pair_eq1: ∀A,B. ∀a1,a2:A. ∀b1,b2:B. 〈a1,b1〉 = 〈a2,b2〉 → a1 = a2. +#A #B #a1 #a2 #b1 #b2 #H destruct // +qed. + +lemma pair_eq2: ∀A,B. ∀a1,a2:A. ∀b1,b2:B. 〈a1,b1〉 = 〈a2,b2〉 → b1 = b2. +#A #B #a1 #a2 #b1 #b2 #H destruct // +qed. + +lemma pair_destruct_1: + ∀A,B.∀a:A.∀b:B.∀c. 〈a,b〉 = c → a = \fst c. + #A #B #a #b *; /2/ +qed. + +lemma pair_destruct_2: + ∀A,B.∀a:A.∀b:B.∀c. 〈a,b〉 = c → b = \snd c. + #A #B #a #b *; /2/ +qed. + +lemma coerc_pair_sigma: + ∀A,B,P. ∀p:A × B. P (\snd p) → A × (Σx:B.P x). +#A #B #P * #a #b #p % [@a | /2/] +qed. +coercion coerc_pair_sigma:∀A,B,P. ∀p:A × B. P (\snd p) → A × (Σx:B.P x) +≝ coerc_pair_sigma on p: (? × ?) to (? × (Sig ??)).