X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fformal_topology%2Fo-basic_topologies.ma;fp=matita%2Fmatita%2Flib%2Fformal_topology%2Fo-basic_topologies.ma;h=0e9d8604f00c5d10cdf1037fcb3faac287b2775e;hb=c8718cc46ab9aaca047366dfefe72bc7c9402e5a;hp=0000000000000000000000000000000000000000;hpb=000dc5a8de79b2ab63a49cf0f9db2b540cc05bcf;p=helm.git diff --git a/matita/matita/lib/formal_topology/o-basic_topologies.ma b/matita/matita/lib/formal_topology/o-basic_topologies.ma new file mode 100644 index 000000000..0e9d8604f --- /dev/null +++ b/matita/matita/lib/formal_topology/o-basic_topologies.ma @@ -0,0 +1,190 @@ + (**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "formal_topology/o-algebra.ma". +include "formal_topology/o-saturations.ma". + +record Obasic_topology: Type[2] ≝ { + Ocarrbt:> OA; + oA: Ocarrbt ⇒_2 Ocarrbt; oJ: Ocarrbt ⇒_2 Ocarrbt; + oA_is_saturation: is_o_saturation ? oA; oJ_is_reduction: is_o_reduction ? oJ; + Ocompatibility: ∀U,V. (oA U >< oJ V) =_1 (U >< oJ V) + }. + +record Ocontinuous_relation (S,T: Obasic_topology) : Type[2] ≝ { + Ocont_rel:> arrows2 OA S T; + Oreduced: ∀U:S. U = oJ ? U → Ocont_rel U =_1 oJ ? (Ocont_rel U); + Osaturated: ∀U:S. U = oA ? U → Ocont_rel⎻* U =_1 oA ? (Ocont_rel⎻* U) + }. + +definition Ocontinuous_relation_setoid: Obasic_topology → Obasic_topology → setoid2. + intros (S T); constructor 1; + [ apply (Ocontinuous_relation S T) + | constructor 1; + [ alias symbol "eq" = "setoid2 eq". + alias symbol "compose" = "category2 composition". + apply (λr,s:Ocontinuous_relation S T. (r⎻* ) ∘ (oA S) = (s⎻* ∘ (oA ?))); + | simplify; intros; apply refl2; + | simplify; intros; apply sym2; apply e + | simplify; intros; apply trans2; [2: apply e |3: apply e1; |1: skip]]] +qed. + +definition Ocontinuous_relation_of_Ocontinuous_relation_setoid: + ∀P,Q. Ocontinuous_relation_setoid P Q → Ocontinuous_relation P Q ≝ λP,Q,c.c. +coercion Ocontinuous_relation_of_Ocontinuous_relation_setoid. + +(* +theorem continuous_relation_eq': + ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. + a = a' → ∀X.a⎻* (A o1 X) = a'⎻* (A o1 X). + intros; apply oa_leq_antisym; intro; unfold minus_star_image; simplify; intros; + [ cut (ext ?? a a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;] + lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut; + cut (A ? (ext ?? a' a1) ⊆ A ? X); [2: apply (. (H ?)‡#); assumption] + lapply (fi ?? (A_is_saturation ???) Hcut); + apply (Hletin1 x); change with (x ∈ ext ?? a' a1); split; simplify; + [ apply I | assumption ] + | cut (ext ?? a' a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;] + lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut; + cut (A ? (ext ?? a a1) ⊆ A ? X); [2: apply (. (H ?)\sup -1‡#); assumption] + lapply (fi ?? (A_is_saturation ???) Hcut); + apply (Hletin1 x); change with (x ∈ ext ?? a a1); split; simplify; + [ apply I | assumption ]] +qed. + +theorem continuous_relation_eq_inv': + ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. + (∀X.a⎻* (A o1 X) = a'⎻* (A o1 X)) → a=a'. + intros 6; + cut (∀a,a': continuous_relation_setoid o1 o2. + (∀X.a⎻* (A o1 X) = a'⎻* (A o1 X)) → + ∀V:(oa_P (carrbt o2)). A o1 (a'⎻ V) ≤ A o1 (a⎻ V)); + [2: clear b H a' a; intros; + lapply depth=0 (λV.saturation_expansive ??? (extS ?? a V)); [2: apply A_is_saturation;|skip] + (* fundamental adjunction here! to be taken out *) + cut (∀V:Ω \sup o2.V ⊆ minus_star_image ?? a (A ? (extS ?? a V))); + [2: intro; intros 2; unfold minus_star_image; simplify; intros; + apply (Hletin V1 x); whd; split; [ exact I | exists; [apply a1] split; assumption]] + clear Hletin; + cut (∀V:Ω \sup o2.V ⊆ minus_star_image ?? a' (A ? (extS ?? a V))); + [2: intro; apply (. #‡(H ?)); apply Hcut] clear H Hcut; + (* second half of the fundamental adjunction here! to be taken out too *) + intro; lapply (Hcut1 (singleton ? V)); clear Hcut1; + unfold minus_star_image in Hletin; unfold singleton in Hletin; simplify in Hletin; + whd in Hletin; whd in Hletin:(?→?→%); simplify in Hletin; + apply (if ?? (A_is_saturation ???)); + intros 2 (x H); lapply (Hletin V ? x ?); + [ apply refl | cases H; assumption; ] + change with (x ∈ A ? (ext ?? a V)); + apply (. #‡(†(extS_singleton ????))); + assumption;] + split; apply Hcut; [2: assumption | intro; apply sym1; apply H] +qed. +*) + +definition Ocontinuous_relation_comp: + ∀o1,o2,o3. + Ocontinuous_relation_setoid o1 o2 → + Ocontinuous_relation_setoid o2 o3 → + Ocontinuous_relation_setoid o1 o3. + intros (o1 o2 o3 r s); constructor 1; + [ apply (s ∘ r); + | intros; + apply sym1; + change in match ((s ∘ r) U) with (s (r U)); + apply (.= (Oreduced : ?)^-1); + [ apply (.= (Oreduced :?)); [ assumption | apply refl1 ] + | apply refl1] + | intros; + apply sym1; + change in match ((s ∘ r)⎻* U) with (s⎻* (r⎻* U)); + apply (.= (Osaturated : ?)^-1); + [ apply (.= (Osaturated : ?)); [ assumption | apply refl1 ] + | apply refl1]] +qed. + +definition OBTop: category2. + constructor 1; + [ apply Obasic_topology + | apply Ocontinuous_relation_setoid + | intro; constructor 1; + [ apply id2 + | intros; apply e; + | intros; apply e;] + | intros; constructor 1; + [ apply Ocontinuous_relation_comp; + | intros; simplify; + change with ((b⎻* ∘ a⎻* ) ∘ oA o1 = ((b'⎻* ∘ a'⎻* ) ∘ oA o1)); + change with (b⎻* ∘ (a⎻* ∘ oA o1) = b'⎻* ∘ (a'⎻* ∘ oA o1)); + change in e with (a⎻* ∘ oA o1 = a'⎻* ∘ oA o1); + change in e1 with (b⎻* ∘ oA o2 = b'⎻* ∘ oA o2); + apply (.= e‡#); + intro x; + change with (b⎻* (a'⎻* (oA o1 x)) =_1 b'⎻*(a'⎻* (oA o1 x))); + apply (.= †(Osaturated o1 o2 a' (oA o1 x) ?)); [ + apply ((o_saturation_idempotent ?? (oA_is_saturation o1) x)^-1);] + apply (.= (e1 (a'⎻* (oA o1 x)))); + change with (b'⎻* (oA o2 (a'⎻* (oA o1 x))) =_1 b'⎻*(a'⎻* (oA o1 x))); + apply (.= †(Osaturated o1 o2 a' (oA o1 x):?)^-1); [ + apply ((o_saturation_idempotent ?? (oA_is_saturation o1) x)^-1);] + apply rule #;] + | intros; simplify; + change with (((a34⎻* ∘ a23⎻* ) ∘ a12⎻* ) ∘ oA o1 = ((a34⎻* ∘ (a23⎻* ∘ a12⎻* )) ∘ oA o1)); + apply rule (#‡ASSOC ^ -1); + | intros; simplify; + change with ((a⎻* ∘ (id2 ? o1)⎻* ) ∘ oA o1 = a⎻* ∘ oA o1); + apply (#‡(id_neutral_right2 : ?)); + | intros; simplify; + change with (((id2 ? o2)⎻* ∘ a⎻* ) ∘ oA o1 = a⎻* ∘ oA o1); + apply (#‡(id_neutral_left2 : ?));] +qed. + +definition Obasic_topology_of_OBTop: objs2 OBTop → Obasic_topology ≝ λx.x. +coercion Obasic_topology_of_OBTop. + +definition Ocontinuous_relation_setoid_of_arrows2_OBTop : + ∀P,Q. arrows2 OBTop P Q → Ocontinuous_relation_setoid P Q ≝ λP,Q,x.x. +coercion Ocontinuous_relation_setoid_of_arrows2_OBTop. + +notation > "B ⇒_\obt2 C" right associative with precedence 72 for @{'arrows2_OBT $B $C}. +notation "B ⇒\sub (\obt 2) C" right associative with precedence 72 for @{'arrows2_OBT $B $C}. +interpretation "'arrows2_OBT" 'arrows2_OBT A B = (arrows2 OBTop A B). + + +(* +(*CSC: unused! *) +(* this proof is more logic-oriented than set/lattice oriented *) +theorem continuous_relation_eqS: + ∀o1,o2:basic_topology.∀a,a': continuous_relation_setoid o1 o2. + a = a' → ∀X. A ? (extS ?? a X) = A ? (extS ?? a' X). + intros; + cut (∀a: arrows1 ? o1 ?.∀x. x ∈ extS ?? a X → ∃y:o2.y ∈ X ∧ x ∈ ext ?? a y); + [2: intros; cases f; clear f; cases H1; exists [apply w] cases x1; split; + try assumption; split; assumption] + cut (∀a,a':continuous_relation_setoid o1 o2.eq1 ? a a' → ∀x. x ∈ extS ?? a X → ∃y:o2. y ∈ X ∧ x ∈ A ? (ext ?? a' y)); + [2: intros; cases (Hcut ?? f); exists; [apply w] cases x1; split; try assumption; + apply (. #‡(H1 ?)); + apply (saturation_expansive ?? (A_is_saturation o1) (ext ?? a1 w) x); + assumption;] clear Hcut; + split; apply (if ?? (A_is_saturation ???)); intros 2; + [lapply (Hcut1 a a' H a1 f) | lapply (Hcut1 a' a (H \sup -1) a1 f)] + cases Hletin; clear Hletin; cases x; clear x; + cut (∀a: arrows1 ? o1 ?. ext ?? a w ⊆ extS ?? a X); + [2,4: intros 3; cases f3; clear f3; simplify in f5; split; try assumption; + exists [1,3: apply w] split; assumption;] + cut (∀a. A ? (ext o1 o2 a w) ⊆ A ? (extS o1 o2 a X)); + [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;] + apply Hcut2; assumption. +qed. +*)