X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Flambda%2Fconvertibility.ma;h=045463aaa3dcce25fe63eff35caccb7ec0348b90;hb=d2b59bd89f761a16a2dbc663f446b4f95c767b83;hp=0cf913111a044410137ed92e1c897f00b9c7839f;hpb=e6a202ab70ee9f3f112616e41334576bc7561b74;p=helm.git diff --git a/matita/matita/lib/lambda/convertibility.ma b/matita/matita/lib/lambda/convertibility.ma index 0cf913111..045463aaa 100644 --- a/matita/matita/lib/lambda/convertibility.ma +++ b/matita/matita/lib/lambda/convertibility.ma @@ -22,21 +22,19 @@ inductive T : Type[0] ≝ . *) -inductive conv : T →T → Prop ≝ - | cbeta: ∀P,M,N. conv (App (Lambda P M) N) (M[0 ≝ N]) - | cdapp: ∀M,N. conv (App (D M) N) (D (App M N)) - | cdlam: ∀M,N. conv (Lambda M (D N)) (D (Lambda M N)) - | cappl: ∀M,M1,N. conv M M1 → conv (App M N) (App M1 N) - | cappr: ∀M,N,N1. conv N N1 → conv (App M N) (App M N1) - | claml: ∀M,M1,N. conv M M1 → conv (Lambda M N) (Lambda M1 N) - | clamr: ∀M,N,N1. conv N N1 → conv (Lambda M N) (Lambda M N1) - | cprodl: ∀M,M1,N. conv M M1 → conv (Prod M N) (Prod M1 N) - | cprodr: ∀M,N,N1. conv N N1 → conv (Prod M N) (Prod M N1) - | cd: ∀M,M1. conv (D M) (D M1). - -definition CO ≝ star … conv. - -lemma red_to_conv: ∀M,N. red M N → conv M N. +inductive conv1 : T →T → Prop ≝ + | cbeta: ∀P,M,N. conv1 (App (Lambda P M) N) (M[0 ≝ N]) + | cappl: ∀M,M1,N. conv1 M M1 → conv1 (App M N) (App M1 N) + | cappr: ∀M,N,N1. conv1 N N1 → conv1 (App M N) (App M N1) + | claml: ∀M,M1,N. conv1 M M1 → conv1 (Lambda M N) (Lambda M1 N) + | clamr: ∀M,N,N1. conv1 N N1 → conv1 (Lambda M N) (Lambda M N1) + | cprodl: ∀M,M1,N. conv1 M M1 → conv1 (Prod M N) (Prod M1 N) + | cprodr: ∀M,N,N1. conv1 N N1 → conv1 (Prod M N) (Prod M N1) + | cd: ∀M,M1. conv1 (D M) (D M1). + +definition conv ≝ star … conv1. + +lemma red_to_conv1: ∀M,N. red M N → conv1 M N. #M #N #redMN (elim redMN) /2/ qed. @@ -50,11 +48,9 @@ inductive d_eq : T →T → Prop ≝ | eprod: ∀M1,M2,N1,N2. d_eq M1 M2 → d_eq N1 N2 → d_eq (Prod M1 N1) (Prod M2 N2). -lemma conv_to_deq: ∀M,N. conv M N → red M N ∨ d_eq M N. +lemma conv1_to_deq: ∀M,N. conv1 M N → red M N ∨ d_eq M N. #M #N #coMN (elim coMN) [#P #B #C %1 // - |#M1 #N1 %1 // - |#M1 #N1 %1 // |#P #M1 #N1 #coPM1 * [#redP %1 /2/ | #eqPM1 %2 /3/] |#P #M1 #N1 #coPM1 * [#redP %1 /2/ | #eqPM1 %2 /3/] |#P #M1 #N1 #coPM1 * [#redP %1 /2/ | #eqPM1 %2 /3/] @@ -64,8 +60,9 @@ lemma conv_to_deq: ∀M,N. conv M N → red M N ∨ d_eq M N. |#P #M1 %2 // ] qed. - -theorem main1: ∀M,N. CO M N → + +(* FG: THIS IS NOT COMPLETE +theorem main1: ∀M,N. conv M N → ∃P,Q. star … red M P ∧ star … red N Q ∧ d_eq P Q. #M #N #coMN (elim coMN) [#B #C #rMB #convBC * #P1 * #Q1 * * #redMP1 #redBQ1 @@ -73,366 +70,4 @@ theorem main1: ∀M,N. CO M N → [ |@(ex_intro … M) @(ex_intro … M) % // % // ] - -lemma red_d : ∀M,P. red (D M) P → ∃N. P = D N ∧ red M N. -#M #P #redMP (inversion redMP) - [#P1 #M1 #N1 #eqH destruct - |#M1 #N1 #eqH destruct - |#M1 #N1 #eqH destruct - |4,5,6,7,8,9:#Q1 #Q2 #N1 #red1 #_ #eqH destruct - |#Q1 #M1 #red1 #_ #eqH destruct #eqP @(ex_intro … M1) /2/ - ] -qed. - -lemma red_lambda : ∀M,N,P. red (Lambda M N) P → - (∃M1. P = (Lambda M1 N) ∧ red M M1) ∨ - (∃N1. P = (Lambda M N1) ∧ red N N1) ∨ - (∃Q. N = D Q ∧ P = D (Lambda M Q)). -#M #N #P #redMNP (inversion redMNP) - [#P1 #M1 #N1 #eqH destruct - |#M1 #N1 #eqH destruct - |#M1 #N1 #eqH destruct #eqP %2 (@(ex_intro … N1)) % // - |4,5,8,9:#Q1 #Q2 #N1 #red1 #_ #eqH destruct - |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 %1 - (@(ex_intro … M1)) % // - |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 %2 - (@(ex_intro … N1)) % // - |#Q1 #M1 #red1 #_ #eqH destruct - ] -qed. - -lemma red_prod : ∀M,N,P. red (Prod M N) P → - (∃M1. P = (Prod M1 N) ∧ red M M1) ∨ - (∃N1. P = (Prod M N1) ∧ red N N1). -#M #N #P #redMNP (inversion redMNP) - [#P1 #M1 #N1 #eqH destruct - |2,3: #M1 #N1 #eqH destruct - |4,5,6,7:#Q1 #Q2 #N1 #red1 #_ #eqH destruct - |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 - (@(ex_intro … M1)) % // - |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %2 - (@(ex_intro … N1)) % // - |#Q1 #M1 #red1 #_ #eqH destruct - ] -qed. - -lemma red_app : ∀M,N,P. red (App M N) P → - (∃M1,N1. M = (Lambda M1 N1) ∧ P = N1[0:=N]) ∨ - (∃M1. M = (D M1) ∧ P = D (App M1 N)) ∨ - (∃M1. P = (App M1 N) ∧ red M M1) ∨ - (∃N1. P = (App M N1) ∧ red N N1). -#M #N #P #redMNP (inversion redMNP) - [#P1 #M1 #N1 #eqH destruct #eqP %1 %1 %1 - @(ex_intro … P1) @(ex_intro … M1) % // - |#M1 #N1 #eqH destruct #eqP %1 %1 %2 /3/ - |#M1 #N1 #eqH destruct - |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 %2 - (@(ex_intro … M1)) % // - |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %2 - (@(ex_intro … N1)) % // - |6,7,8,9:#Q1 #Q2 #N1 #red1 #_ #eqH destruct - |#Q1 #M1 #red1 #_ #eqH destruct - ] -qed. - -definition reduct ≝ λn,m. red m n. - -definition SN ≝ WF ? reduct. - -definition NF ≝ λM. ∀N. ¬ (reduct N M). - -theorem NF_to_SN: ∀M. NF M → SN M. -#M #nfM % #a #red @False_ind /2/ -qed. - -lemma NF_Sort: ∀i. NF (Sort i). -#i #N % #redN (inversion redN) - [1: #P #N #M #H destruct - |2,3 :#N #M #H destruct - |4,5,6,7,8,9: #N #M #P #_ #_ #H destruct - |#M #N #_ #_ #H destruct - ] -qed. - -lemma NF_Rel: ∀i. NF (Rel i). -#i #N % #redN (inversion redN) - [1: #P #N #M #H destruct - |2,3 :#N #M #H destruct - |4,5,6,7,8,9: #N #M #P #_ #_ #H destruct - |#M #N #_ #_ #H destruct - ] -qed. - -lemma red_subst : ∀N,M,M1,i. red M M1 → red M[i≝N] M1[i≝N]. -#N @Telim_size #P (cases P) - [1,2:#j #Hind #M1 #i #r1 @False_ind /2/ - |#P #Q #Hind #M1 #i #r1 (cases (red_app … r1)) - [* - [* - [* #M2 * #N2 * #eqP #eqM1 >eqP normalize - >eqM1 >(plus_n_O i) >(subst_lemma N2) <(plus_n_O i) - (cut (i+1 =S i)) [//] #Hcut >Hcut @rbeta - |* #M2 * #eqP #eqM1 >eqM1 >eqP normalize @rdapp - ] - |* #M2 * #eqM1 #rP >eqM1 normalize @rappl @Hind /2/ - ] - |* #N2 * #eqM1 #rQ >eqM1 normalize @rappr @Hind /2/ - ] - |#P #Q #Hind #M1 #i #r1 (cases (red_lambda …r1)) - [* - [* #P1 * #eqM1 #redP >eqM1 normalize @rlaml @Hind /2/ - |* #Q1 * #eqM1 #redP >eqM1 normalize @rlamr @Hind /2/ - ] - |* #M2 * #eqQ #eqM1 >eqM1 >eqQ normalize @rdlam - ] - |#P #Q #Hind #M1 #i #r1 (cases (red_prod …r1)) - [* #P1 * #eqM1 #redP >eqM1 normalize @rprodl @Hind /2/ - |* #P1 * #eqM1 #redP >eqM1 normalize @rprodr @Hind /2/ - ] - |#P #Hind #M1 #i #r1 (cases (red_d …r1)) - #P1 * #eqM1 #redP >eqM1 normalize @d @Hind /2/ - ] -qed. - -lemma red_lift: ∀N,N1,n. red N N1 → ∀k. red (lift N k n) (lift N1 k n). -#N #N1 #n #r1 (elim r1) normalize /2/ -qed. - -(* star red *) -lemma star_appl: ∀M,M1,N. star … red M M1 → - star … red (App M N) (App M1 N). -#M #M1 #N #star1 (elim star1) // -#B #C #starMB #redBC #H @(inj … H) /2/ -qed. - -lemma star_appr: ∀M,N,N1. star … red N N1 → - star … red (App M N) (App M N1). -#M #N #N1 #star1 (elim star1) // -#B #C #starMB #redBC #H @(inj … H) /2/ -qed. - -lemma star_app: ∀M,M1,N,N1. star … red M M1 → star … red N N1 → - star … red (App M N) (App M1 N1). -#M #M1 #N #N1 #redM #redN @(trans_star ??? (App M1 N)) /2/ -qed. - -lemma star_laml: ∀M,M1,N. star … red M M1 → - star … red (Lambda M N) (Lambda M1 N). -#M #M1 #N #star1 (elim star1) // -#B #C #starMB #redBC #H @(inj … H) /2/ -qed. - -lemma star_lamr: ∀M,N,N1. star … red N N1 → - star … red (Lambda M N) (Lambda M N1). -#M #N #N1 #star1 (elim star1) // -#B #C #starMB #redBC #H @(inj … H) /2/ -qed. - -lemma star_lam: ∀M,M1,N,N1. star … red M M1 → star … red N N1 → - star … red (Lambda M N) (Lambda M1 N1). -#M #M1 #N #N1 #redM #redN @(trans_star ??? (Lambda M1 N)) /2/ -qed. - -lemma star_prodl: ∀M,M1,N. star … red M M1 → - star … red (Prod M N) (Prod M1 N). -#M #M1 #N #star1 (elim star1) // -#B #C #starMB #redBC #H @(inj … H) /2/ -qed. - -lemma star_prodr: ∀M,N,N1. star … red N N1 → - star … red (Prod M N) (Prod M N1). -#M #N #N1 #star1 (elim star1) // -#B #C #starMB #redBC #H @(inj … H) /2/ -qed. - -lemma star_prod: ∀M,M1,N,N1. star … red M M1 → star … red N N1 → - star … red (Prod M N) (Prod M1 N1). -#M #M1 #N #N1 #redM #redN @(trans_star ??? (Prod M1 N)) /2/ -qed. - -lemma star_d: ∀M,M1. star … red M M1 → - star … red (D M) (D M1). -#M #M1 #redM (elim redM) // #B #C #starMB #redBC #H @(inj … H) /2/ -qed. - -lemma red_subst1 : ∀M,N,N1,i. red N N1 → - (star … red) M[i≝N] M[i≝N1]. -#M (elim M) - [// - |#i #P #Q #n #r1 (cases (true_or_false (leb i n))) - [#lein (cases (le_to_or_lt_eq i n (leb_true_to_le … lein))) - [#ltin >(subst_rel1 … ltin) >(subst_rel1 … ltin) // - |#eqin >eqin >subst_rel2 >subst_rel2 @R_to_star /2/ - ] - |#lefalse (cut (n < i)) [@not_le_to_lt /2/] #ltni - >(subst_rel3 … ltni) >(subst_rel3 … ltni) // - ] - |#P #Q #Hind1 #Hind2 #M1 #N1 #i #r1 normalize @star_app /2/ - |#P #Q #Hind1 #Hind2 #M1 #N1 #i #r1 normalize @star_lam /2/ - |#P #Q #Hind1 #Hind2 #M1 #N1 #i #r1 normalize @star_prod /2/ - |#P #Hind #M #N #i #r1 normalize @star_d /2/ - ] -qed. - -lemma SN_d : ∀M. SN M → SN (D M). -#M #snM (elim snM) #b #H #Hind % #a #redd (cases (red_d … redd)) -#Q * #eqa #redbQ >eqa @Hind // -qed. - -lemma SN_step: ∀N. SN N → ∀M. reduct M N → SN M. -#N * #b #H #M #red @H //. -qed. - -lemma SN_star: ∀M,N. (star … red) N M → SN N → SN M. -#M #N #rstar (elim rstar) // -#Q #P #HbQ #redQP #snNQ #snN @(SN_step …redQP) /2/ -qed. - -lemma sub_red: ∀M,N.subterm N M → ∀N1.red N N1 → -∃M1.subterm N1 M1 ∧ red M M1. -#M #N #subN (elim subN) /4/ -(* trsansitive case *) -#P #Q #S #subPQ #subQS #H1 #H2 #A #redP (cases (H1 ? redP)) -#B * #subA #redQ (cases (H2 ? redQ)) #C * #subBC #redSC -@(ex_intro … C) /3/ -qed. - -axiom sub_star_red: ∀M,N.(star … subterm) N M → ∀N1.red N N1 → -∃M1.subterm N1 M1 ∧ red M M1. - -lemma SN_subterm: ∀M. SN M → ∀N.subterm N M → SN N. -#M #snM (elim snM) #M #snM #HindM #N #subNM % #N1 #redN -(cases (sub_red … subNM ? redN)) #M1 * -#subN1M1 #redMM1 @(HindM … redMM1) // -qed. - -lemma SN_subterm_star: ∀M. SN M → ∀N.(star … subterm N M) → SN N. -#M #snM #N #Hstar (cases (star_inv T subterm M N)) #_ #H -lapply (H Hstar) #Hstari (elim Hstari) // -#M #N #_ #subNM #snM @(SN_subterm …subNM) // -qed. - -definition shrink ≝ λN,M. reduct N M ∨ (TC … subterm) N M. - -definition SH ≝ WF ? shrink. - -lemma SH_subterm: ∀M. SH M → ∀N.(star … subterm) N M → SH N. -#M #snM (elim snM) #M -#snM #HindM #N #subNM (cases (star_case ???? subNM)) - [#eqNM >eqNM % /2/ - |#subsNM % #N1 * - [#redN (cases (sub_star_red … subNM ? redN)) #M1 * - #subN1M1 #redMM1 @(HindM M1) /2/ - |#subN1 @(HindM N) /2/ - ] - ] -qed. - -theorem SN_to_SH: ∀N. SN N → SH N. -#N #snN (elim snN) (@Telim_size) -#b #Hsize #snb #Hind % #a * /2/ #subab @Hsize; - [(elim subab) - [#c #subac @size_subterm // - |#b #c #subab #subbc #sab @(transitive_lt … sab) @size_subterm // - ] - |@SN_step @(SN_subterm_star b); - [% /2/ |@TC_to_star @subab] % @snb - |#a1 #reda1 cases(sub_star_red b a ?? reda1); - [#a2 * #suba1 #redba2 @(SH_subterm a2) /2/ |/2/ ] - ] -qed. - -lemma SH_to_SN: ∀N. SH N → SN N. -@WF_antimonotonic /2/ qed. - -lemma SN_Lambda: ∀N.SN N → ∀M.SN M → SN (Lambda N M). -#N #snN (elim snN) #P #shP #HindP #M #snM -(* for M we proceed by induction on SH *) -(lapply (SN_to_SH ? snM)) #shM (elim shM) -#Q #shQ #HindQ % #a #redH (cases (red_lambda … redH)) - [* - [* #S * #eqa #redPS >eqa @(HindP S ? Q ?) // - @SH_to_SN % /2/ - |* #S * #eqa #redQS >eqa @(HindQ S) /2/ - ] - |* #S * #eqQ #eqa >eqa @SN_d @(HindQ S) /3/ - ] -qed. - -(* -lemma SH_Lambda: ∀N.SH N → ∀M.SH M → SN (Lambda N M). -#N #snN (elim snN) #P #snP #HindP #M #snM (elim snM) -#Q #snQ #HindQ % #a #redH (cases (red_lambda … redH)) - [* - [* #S * #eqa #redPS >eqa @(HindP S ? Q ?) /2/ - % /2/ - |* #S * #eqa #redQS >eqa @(HindQ S) /2/ - ] - |* #S * #eqQ #eqa >eqa @SN_d @(HindQ S) /3/ - ] -qed. *) - -lemma SN_Prod: ∀N.SN N → ∀M.SN M → SN (Prod N M). -#N #snN (elim snN) #P #shP #HindP #M #snM (elim snM) -#Q #snQ #HindQ % #a #redH (cases (red_prod … redH)) - [* #S * #eqa #redPS >eqa @(HindP S ? Q ?) // - % /2/ - |* #S * #eqa #redQS >eqa @(HindQ S) /2/ - ] -qed. - -lemma SN_subst: ∀i,N,M.SN M[i ≝ N] → SN M. -#i #N (cut (∀P.SN P → ∀M.P=M[i ≝ N] → SN M)); - [#P #H (elim H) #Q #snQ #Hind #M #eqM % #M1 #redM - @(Hind M1[i:=N]) // >eqM /2/ - |#Hcut #M #snM @(Hcut … snM) // -qed. - -lemma SN_DAPP: ∀N,M. SN (App M N) → SN (App (D M) N). -cut (∀P. SN P → ∀M,N. P = App M N → SN (App (D M) N)); [|/2/] -#P #snP (elim snP) #Q #snQ #Hind -#M #N #eqQ % #A #rA (cases (red_app … rA)) - [* - [* - [* #M1 * #N1 * #eqH destruct - |* #M1 * #eqH destruct #eqA >eqA @SN_d % @snQ - ] - |* #M1 * #eqA #red1 (cases (red_d …red1)) - #M2 * #eqM1 #r2 >eqA >eqM1 @(Hind (App M2 N)) /2/ - ] - |* #M2 * #eqA >eqA #r2 @(Hind (App M M2)) /2/ - ] -qed. - -lemma SN_APP: ∀P.SN P → ∀N. SN N → ∀M. - SN M[0:=N] → SN (App (Lambda P M) N). -#P #snP (elim snP) #A #snA #HindA -#N #snN (elim snN) #B #snB #HindB -#M #snM1 (cut (SH M)) [@SN_to_SH @(SN_subst … snM1)] #shM -(generalize in match snM1) (elim shM) -#C #shC #HindC #snC1 % #Q #redQ (cases (red_app … redQ)) - [* - [* - [* #M2 * #N2 * #eqlam destruct #eqQ // - |* #M2 * #eqlam destruct - ] - |* #M2 * #eqQ #redlam >eqQ (cases (red_lambda …redlam)) - [* - [* #M3 * #eqM2 #r2 >eqM2 @HindA // % /2/ - |* #M3 * #eqM2 #r2 >eqM2 @HindC; - [%1 // |@(SN_step … snC1) /2/] - ] - |* #M3 * #eqC #eqM2 >eqM2 @SN_DAPP @HindC; - [%2 >eqC @inj // - |@(SN_subterm … snC1) >eqC normalize // - ] - ] - ] - |* #M2 * #eqQ #r2 >eqQ @HindB // @(SN_star … snC1) - @red_subst1 // - ] -qed. - - - - +*)