X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Flambda%2Fext.ma;h=2e2f30359e991f52deef558948f631c13d8cff0f;hb=a00c1b5c423e143cef6750ed75782dd91cdb1129;hp=b933ed7b6df0d760a3dca8f45c83e64b92cd4612;hpb=f5f0e9cd26adc526ee69a693d5e10ccb47cc399e;p=helm.git diff --git a/matita/matita/lib/lambda/ext.ma b/matita/matita/lib/lambda/ext.ma index b933ed7b6..2e2f30359 100644 --- a/matita/matita/lib/lambda/ext.ma +++ b/matita/matita/lib/lambda/ext.ma @@ -12,27 +12,113 @@ (* *) (**************************************************************************) -include "lambda/types.ma". +include "lambda/subst.ma". +include "basics/list.ma". +include "lambda/lambda_notation.ma". (* MATTER CONCERNING STRONG NORMALIZATION TO BE PUT ELSEWHERE *****************) -(* from sn.ma *****************************************************************) +(* arithmetics ****************************************************************) -(* all(P,l) holds when P holds for all members of l *) -let rec all (P:T→Prop) l on l ≝ match l with - [ nil ⇒ True - | cons A D ⇒ P A ∧ all P D +lemma arith1: ∀x,y. (S x) ≰ (S y) → x ≰ y. +#x #y #HS @nmk (elim HS) -HS /3/ +qed. + +lemma arith2: ∀i,p,k. k ≤ i → i + p - (k + p) = i - k. +#i #p #k #H @plus_to_minus +>commutative_plus >(commutative_plus k) >associative_plus @eq_f /2/ +qed. + +lemma arith3: ∀x,y,z. x ≰ y → x + z ≰ y + z. +#x #y #z #H @nmk (elim H) -H /3/ +qed. + +lemma arith4: ∀x,y. S x ≰ y → x≠y → y < x. +#x #y #H1 #H2 lapply (not_le_to_lt … H1) -H1 #H1 @not_eq_to_le_to_lt /2/ +qed. + +lemma arith5: ∀x,y. x < y → S (y - 1) ≰ x. +#x #y #H @lt_to_not_le H // ] +#x1 #l1 #IH1 #l2 elim l2 -l2 [ #false elim false ] +#x2 #l2 #_ #H elim H -H; normalize /3/ +qed. + +lemma all2_hd: ∀A,B:Type[0]. ∀P:A→B→Prop. ∀a,b. P a b → + ∀l1,l2. all2 … P l1 l2 → P (hd … l1 a) (hd … l2 b). +#A #B #P #a #b #Hab #l1 elim l1 -l1 [ #l2 #H2 >H2 @Hab ] +#x1 #l1 #_ #l2 elim l2 -l2 [ #false elim false ] +#x2 #l2 #_ #H elim H -H // +qed. + +lemma all2_tl: ∀A,B:Type[0]. ∀P:A→B→Prop. + ∀l1,l2. all2 … P l1 l2 → all2 … P (tail … l1) (tail … l2). +#A #B #P #l1 elim l1 -l1 [ #l2 #H >H // ] +#x1 #l1 #_ #l2 elim l2 -l2 [ #false elim false ] +#x2 #l2 #_ #H elim H -H // +qed. + +lemma all2_nth: ∀A,B:Type[0]. ∀P:A→B→Prop. ∀a,b. P a b → + ∀i,l1,l2. all2 … P l1 l2 → P (nth i … l1 a) (nth i … l2 b). +#A #B #P #a #b #Hab #i elim i -i [ @all2_hd // | #i #IH #l1 #l2 #H @IH /2/ ] +qed. + +lemma all2_append: ∀A,B,P,l2,m2. all2 A B P l2 m2 → + ∀l1,m1. all2 A B P l1 m1 → all2 A B P (l1 @ l2) (m1 @ m2). +#A #B #P #l2 #m2 #H2 #l1 (elim l1) -l1 [ #m1 #H >H @H2 ] +#x1 #l1 #IH1 #m2 elim m2 -m2 [ #false elim false ] +#x2 #m2 #_ #H elim H -H /3/ +qed. + +lemma all2_symmetric: ∀A. ∀P:A→A→Prop. symmetric … P → symmetric … (all2 … P). +#A #P #HP #l1 elim l1 -l1 [ #l2 #H >H // ] +#x1 #l1 #IH1 #l2 elim l2 -l2 [ #false elim false ] +#x2 #l2 #_ #H elim H -H /3/ +qed. + +(* terms **********************************************************************) + (* Appl F l generalizes App applying F to a list of arguments * The head of l is applied first *) @@ -41,89 +127,76 @@ let rec Appl F l on l ≝ match l with | cons A D ⇒ Appl (App F A) D ]. +lemma appl_append: ∀N,l,M. Appl M (l @ [N]) = App (Appl M l) N. +#N #l elim l -l // #hd #tl #IHl #M >IHl // +qed. + +(* FG: not needed for now +(* nautral terms *) +inductive neutral: T → Prop ≝ + | neutral_sort: ∀n.neutral (Sort n) + | neutral_rel: ∀i.neutral (Rel i) + | neutral_app: ∀M,N.neutral (App M N) +. +*) + +(* substitution ***************************************************************) + (* FG: do we need this? definition lift0 ≝ λp,k,M . lift M p k. (**) (* remove definition *) -theorem lift_appl: ∀p,k,l,F. lift (Appl F l) p k = +lemma lift_appl: ∀p,k,l,F. lift (Appl F l) p k = Appl (lift F p k) (map … (lift0 p k) l). #p #k #l (elim l) -l /2/ #A #D #IHl #F >IHl // qed. *) -(* from rc.ma *****************************************************************) - -theorem arith1: ∀x,y. (S x) ≰ (S y) → x ≰ y. -#x #y #HS @nmk (elim HS) -HS /3/ -qed. - -theorem arith2: ∀i,p,k. k ≤ i → i + p - (k + p) = i - k. -#i #p #k #H @plus_to_minus ->commutative_plus >(commutative_plus k) >associative_plus @eq_f /2/ +lemma lift_rel_lt: ∀i,p,k. (S i) ≤ k → lift (Rel i) k p = Rel i. +#i #p #k #Hik normalize >(le_to_leb_true … Hik) // qed. -theorem arith3: ∀x,y,z. x ≰ y → x + z ≰ y + z. -#x #y #z #H @nmk (elim H) -H /3/ +lemma lift_rel_ge: ∀i,p,k. (S i) ≰ k → lift (Rel i) k p = Rel (i+p). +#i #p #k #Hik normalize >(lt_to_leb_false (S i) k) /2/ qed. -theorem length_append: ∀A. ∀(l2,l1:list A). |l1@l2| = |l1| + |l2|. -#A #l2 #l1 (elim l1) -l1 (normalize) // -qed. +lemma lift_app: ∀M,N,k,p. + lift (App M N) k p = App (lift M k p) (lift N k p). +// qed. -theorem lift_rel_lt: ∀i,p,k. (S i) ≤ k → lift (Rel i) k p = Rel i. -#i #p #k #Hik normalize >(le_to_leb_true … Hik) // -qed. +lemma lift_lambda: ∀N,M,k,p. lift (Lambda N M) k p = + Lambda (lift N k p) (lift M (k + 1) p). +// qed. -theorem lift_rel_ge: ∀i,p,k. (S i) ≰ k → lift (Rel i) k p = Rel (i+p). -#i #p #k #Hik normalize >(lt_to_leb_false (S i) k) /2/ -qed. +lemma lift_prod: ∀N,M,k,p. + lift (Prod N M) k p = Prod (lift N k p) (lift M (k + 1) p). +// qed. -theorem lift_app: ∀M,N,k,p. - lift (App M N) k p = App (lift M k p) (lift N k p). +lemma subst_app: ∀M,N,k,L. (App M N)[k≝L] = App M[k≝L] N[k≝L]. // qed. -theorem lift_lambda: ∀N,M,k,p. lift (Lambda N M) k p = - Lambda (lift N k p) (lift M (k + 1) p). +lemma subst_lambda: ∀N,M,k,L. (Lambda N M)[k≝L] = Lambda N[k≝L] M[k+1≝L]. // qed. -theorem lift_prod: ∀N,M,k,p. - lift (Prod N M) k p = Prod (lift N k p) (lift M (k + 1) p). +lemma subst_prod: ∀N,M,k,L. (Prod N M)[k≝L] = Prod N[k≝L] M[k+1≝L]. // qed. -(* telescopic non-delifting substitution of l in M. - * [this is the telescoping delifting substitution lifted by |l|] + +axiom lift_subst_lt: ∀A,B,i,j,k. lift (B[j≝A]) (j+k) i = + (lift B (j+k+1) i)[j≝lift A k i]. + +(* telescopic delifting substitution of l in M. * Rel 0 is replaced with the head of l *) -let rec substc M l on l ≝ match l with - [ nil ⇒ M - | cons A D ⇒ (lift (substc M[0≝A] D) 0 1) +let rec tsubst M l on l ≝ match l with + [ nil ⇒ M + | cons A D ⇒ (tsubst M[0≝A] D) ]. -notation "M [ l ]" non associative with precedence 90 for @{'Substc $M $l}. - -interpretation "Substc" 'Substc M l = (substc M l). - -(* this is just to test that substitution works as expected -theorem test1: ∀A,B,C. (App (App (Rel 0) (Rel 1)) (Rel 2))[A::B::C::nil ?] = - App (App (lift A 0 1) (lift B 0 2)) (lift C 0 3). -#A #B #C normalize ->lift_0 >lift_0 >lift_0 ->lift_lift1>lift_lift1>lift_lift1>lift_lift1>lift_lift1>lift_lift1 -normalize -qed. -*) +interpretation "telescopic substitution" 'Subst1 M l = (tsubst M l). -theorem substc_refl: ∀l,t. (lift t 0 (|l|))[l] = (lift t 0 (|l|)). -#l (elim l) -l (normalize) // #A #D #IHl #t cut (S (|D|) = |D| + 1) // (**) (* eliminate cut *) +lemma tsubst_refl: ∀l,t. (lift t 0 (|l|))[l] = t. +#l elim l -l; normalize // #hd #tl #IHl #t cut (S (|tl|) = |tl| + 1) // (**) (* eliminate cut *) qed. -theorem substc_sort: ∀n,l. (Sort n)[l] = Sort n. -// -qed. -(* FG: not needed for now -(* nautral terms *) -inductive neutral: T → Prop ≝ - | neutral_sort: ∀n.neutral (Sort n) - | neutral_rel: ∀i.neutral (Rel i) - | neutral_app: ∀M,N.neutral (App M N) -. -*) +lemma tsubst_sort: ∀n,l. (Sort n)[l] = Sort n. +// qed.