X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Flambda%2Fext.ma;h=7e64aba31ff7d40ca240c63052a2c0769fffa7f3;hb=4478acc3e2f9f9e953eb24d3815e3b1d7ac4b030;hp=d37fb9f52504e199890133baf468453f70fa7072;hpb=60779bad5c038c5573514800a7b50eafb45013fa;p=helm.git diff --git a/matita/matita/lib/lambda/ext.ma b/matita/matita/lib/lambda/ext.ma index d37fb9f52..7e64aba31 100644 --- a/matita/matita/lib/lambda/ext.ma +++ b/matita/matita/lib/lambda/ext.ma @@ -12,9 +12,7 @@ (* *) (**************************************************************************) -include "lambda/subst.ma". include "basics/list.ma". -include "lambda/lambda_notation.ma". (* MATTER CONCERNING STRONG NORMALIZATION TO BE PUT ELSEWHERE *****************) @@ -43,6 +41,10 @@ qed. (* lists **********************************************************************) +lemma length_append: ∀A. ∀(l2,l1:list A). |l1@l2| = |l1| + |l2|. +#A #l2 #l1 elim l1 -l1; normalize // +qed. + (* all(?,P,l) holds when P holds for all members of l *) let rec all (A:Type[0]) (P:A→Prop) l on l ≝ match l with [ nil ⇒ True @@ -50,11 +52,11 @@ let rec all (A:Type[0]) (P:A→Prop) l on l ≝ match l with ]. lemma all_hd: ∀A:Type[0]. ∀P:A→Prop. ∀a. P a → ∀l. all … P l → P (hd … l a). -#A #P #a #Ha #l elim l -l [ #_ @Ha | #b #l #_ #Hl elim Hl // ] +#A #P #a #Ha #l elim l -l [ #_ @Ha | #b #l #_ #Hl elim Hl -Hl // ] qed. lemma all_tl: ∀A:Type[0]. ∀P:A→Prop. ∀l. all … P l → all … P (tail … l). -#A #P #l elim l -l // #b #l #IH #Hl elim Hl // +#A #P #l elim l -l // #b #l #IH #Hl elim Hl -Hl // qed. lemma all_nth: ∀A:Type[0]. ∀P:A→Prop. ∀a. P a → ∀i,l. all … P l → P (nth i … l a). @@ -62,103 +64,53 @@ lemma all_nth: ∀A:Type[0]. ∀P:A→Prop. ∀a. P a → ∀i,l. all … P l qed. lemma all_append: ∀A,P,l2,l1. all A P l1 → all A P l2 → all A P (l1 @ l2). -#A #P #l2 #l1 (elim l1) -l1 (normalize) // #hd #tl #IH1 #H (elim H) /3/ +#A #P #l2 #l1 elim l1 -l1; normalize // #hd #tl #IH1 #H elim H -H /3/ qed. (* all2(?,P,l1,l2) holds when P holds for all paired members of l1 and l2 *) -let rec all2 (A:Type[0]) (P:A→A→Prop) l1 l2 on l1 ≝ match l1 with +let rec all2 (A,B:Type[0]) (P:A→B→Prop) l1 l2 on l1 ≝ match l1 with [ nil ⇒ l2 = nil ? | cons hd1 tl1 ⇒ match l2 with [ nil ⇒ False - | cons hd2 tl2 ⇒ P hd1 hd2 ∧ all2 A P tl1 tl2 + | cons hd2 tl2 ⇒ P hd1 hd2 ∧ all2 A B P tl1 tl2 ] ]. -lemma length_append: ∀A. ∀(l2,l1:list A). |l1@l2| = |l1| + |l2|. -#A #l2 #l1 (elim l1) -l1 (normalize) // -qed. - -(* terms **********************************************************************) +lemma all2_length: ∀A,B:Type[0]. ∀P:A→B→Prop. + ∀l1,l2. all2 … P l1 l2 → |l1|=|l2|. +#A #B #P #l1 elim l1 -l1 [ #l2 #H >H // ] +#x1 #l1 #IH1 #l2 elim l2 -l2 [ #false elim false ] +#x2 #l2 #_ #H elim H -H; normalize /3/ +qed. -(* Appl F l generalizes App applying F to a list of arguments - * The head of l is applied first - *) -let rec Appl F l on l ≝ match l with - [ nil ⇒ F - | cons A D ⇒ Appl (App F A) D - ]. - -lemma appl_append: ∀N,l,M. Appl M (l @ [N]) = App (Appl M l) N. -#N #l (elim l) -l // #hd #tl #IHl #M >IHl // +lemma all2_hd: ∀A,B:Type[0]. ∀P:A→B→Prop. ∀a,b. P a b → + ∀l1,l2. all2 … P l1 l2 → P (hd … l1 a) (hd … l2 b). +#A #B #P #a #b #Hab #l1 elim l1 -l1 [ #l2 #H2 >H2 @Hab ] +#x1 #l1 #_ #l2 elim l2 -l2 [ #false elim false ] +#x2 #l2 #_ #H elim H -H // qed. -(* FG: not needed for now -(* nautral terms *) -inductive neutral: T → Prop ≝ - | neutral_sort: ∀n.neutral (Sort n) - | neutral_rel: ∀i.neutral (Rel i) - | neutral_app: ∀M,N.neutral (App M N) -. -*) - -(* substitution ***************************************************************) - -(* FG: do we need this? -definition lift0 ≝ λp,k,M . lift M p k. (**) (* remove definition *) - -lemma lift_appl: ∀p,k,l,F. lift (Appl F l) p k = - Appl (lift F p k) (map … (lift0 p k) l). -#p #k #l (elim l) -l /2/ #A #D #IHl #F >IHl // +lemma all2_tl: ∀A,B:Type[0]. ∀P:A→B→Prop. + ∀l1,l2. all2 … P l1 l2 → all2 … P (tail … l1) (tail … l2). +#A #B #P #l1 elim l1 -l1 [ #l2 #H >H // ] +#x1 #l1 #_ #l2 elim l2 -l2 [ #false elim false ] +#x2 #l2 #_ #H elim H -H // qed. -*) -lemma lift_rel_lt: ∀i,p,k. (S i) ≤ k → lift (Rel i) k p = Rel i. -#i #p #k #Hik normalize >(le_to_leb_true … Hik) // +lemma all2_nth: ∀A,B:Type[0]. ∀P:A→B→Prop. ∀a,b. P a b → + ∀i,l1,l2. all2 … P l1 l2 → P (nth i … l1 a) (nth i … l2 b). +#A #B #P #a #b #Hab #i elim i -i [ @all2_hd // | #i #IH #l1 #l2 #H @IH /2/ ] qed. -lemma lift_rel_ge: ∀i,p,k. (S i) ≰ k → lift (Rel i) k p = Rel (i+p). -#i #p #k #Hik normalize >(lt_to_leb_false (S i) k) /2/ -qed. - -lemma lift_app: ∀M,N,k,p. - lift (App M N) k p = App (lift M k p) (lift N k p). -// qed. - -lemma lift_lambda: ∀N,M,k,p. lift (Lambda N M) k p = - Lambda (lift N k p) (lift M (k + 1) p). -// qed. - -lemma lift_prod: ∀N,M,k,p. - lift (Prod N M) k p = Prod (lift N k p) (lift M (k + 1) p). -// qed. - -lemma subst_app: ∀M,N,k,L. (App M N)[k≝L] = App M[k≝L] N[k≝L]. -// qed. - -lemma subst_lambda: ∀N,M,k,L. (Lambda N M)[k≝L] = Lambda N[k≝L] M[k+1≝L]. -// qed. - -lemma subst_prod: ∀N,M,k,L. (Prod N M)[k≝L] = Prod N[k≝L] M[k+1≝L]. -// qed. - - -axiom lift_subst_lt: ∀A,B,i,j,k. lift (B[j≝A]) (j+k) i = - (lift B (j+k+1) i)[j≝lift A k i]. - -(* telescopic delifting substitution of l in M. - * Rel 0 is replaced with the head of l - *) -let rec tsubst M l on l ≝ match l with - [ nil ⇒ M - | cons A D ⇒ (tsubst M[0≝A] D) - ]. - -interpretation "telescopic substitution" 'Subst1 M l = (tsubst M l). - -lemma tsubst_refl: ∀l,t. (lift t 0 (|l|))[l] = t. -#l (elim l) -l (normalize) // #hd #tl #IHl #t cut (S (|tl|) = |tl| + 1) // (**) (* eliminate cut *) +lemma all2_append: ∀A,B,P,l2,m2. all2 A B P l2 m2 → + ∀l1,m1. all2 A B P l1 m1 → all2 A B P (l1 @ l2) (m1 @ m2). +#A #B #P #l2 #m2 #H2 #l1 (elim l1) -l1 [ #m1 #H >H @H2 ] +#x1 #l1 #IH1 #m2 elim m2 -m2 [ #false elim false ] +#x2 #m2 #_ #H elim H -H /3/ qed. -lemma tsubst_sort: ∀n,l. (Sort n)[l] = Sort n. -// +lemma all2_symmetric: ∀A. ∀P:A→A→Prop. symmetric … P → symmetric … (all2 … P). +#A #P #HP #l1 elim l1 -l1 [ #l2 #H >H // ] +#x1 #l1 #IH1 #l2 elim l2 -l2 [ #false elim false ] +#x2 #l2 #_ #H elim H -H /3/ qed.