X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Flambda%2Freduction.ma;h=58e4e179aab1ff9e6f8fa935d257bf0749c9125e;hb=d2b59bd89f761a16a2dbc663f446b4f95c767b83;hp=8d0cefc1687ddfe5f44d6f5d3f6f0bfeb254d739;hpb=a7de6cc15403f555ed5d467e59e7c4122b24816b;p=helm.git diff --git a/matita/matita/lib/lambda/reduction.ma b/matita/matita/lib/lambda/reduction.ma index 8d0cefc16..58e4e179a 100644 --- a/matita/matita/lib/lambda/reduction.ma +++ b/matita/matita/lib/lambda/reduction.ma @@ -24,8 +24,6 @@ inductive T : Type[0] ≝ inductive red : T →T → Prop ≝ | rbeta: ∀P,M,N. red (App (Lambda P M) N) (M[0 ≝ N]) - | rdapp: ∀M,N. red (App (D M) N) (D (App M N)) - | rdlam: ∀M,N. red (Lambda M (D N)) (D (Lambda M N)) | rappl: ∀M,M1,N. red M M1 → red (App M N) (App M1 N) | rappr: ∀M,N,N1. red N N1 → red (App M N) (App M N1) | rlaml: ∀M,M1,N. red M M1 → red (Lambda M N) (Lambda M1 N) @@ -41,30 +39,55 @@ qed. lemma red_d : ∀M,P. red (D M) P → ∃N. P = D N ∧ red M N. #M #P #redMP (inversion redMP) [#P1 #M1 #N1 #eqH destruct - |#M1 #N1 #eqH destruct - |#M1 #N1 #eqH destruct - |4,5,6,7,8,9:#Q1 #Q2 #N1 #red1 #_ #eqH destruct + |2,3,4,5,6,7:#Q1 #Q2 #N1 #red1 #_ #eqH destruct |#Q1 #M1 #red1 #_ #eqH destruct #eqP @(ex_intro … M1) /2/ ] qed. lemma red_lambda : ∀M,N,P. red (Lambda M N) P → (∃M1. P = (Lambda M1 N) ∧ red M M1) ∨ - (∃N1. P = (Lambda M N1) ∧ red N N1) ∨ - (∃Q. N = D Q ∧ P = D (Lambda M Q)). + (∃N1. P = (Lambda M N1) ∧ red N N1). #M #N #P #redMNP (inversion redMNP) [#P1 #M1 #N1 #eqH destruct - |#M1 #N1 #eqH destruct - |#M1 #N1 #eqH destruct #eqP %2 (@(ex_intro … N1)) % // - |4,5,8,9:#Q1 #Q2 #N1 #red1 #_ #eqH destruct - |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 %1 + |2,3,6,7:#Q1 #Q2 #N1 #red1 #_ #eqH destruct + |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 (@(ex_intro … M1)) % // - |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 %2 + |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %2 (@(ex_intro … N1)) % // |#Q1 #M1 #red1 #_ #eqH destruct ] qed. +lemma red_prod : ∀M,N,P. red (Prod M N) P → + (∃M1. P = (Prod M1 N) ∧ red M M1) ∨ + (∃N1. P = (Prod M N1) ∧ red N N1). +#M #N #P #redMNP (inversion redMNP) + [#P1 #M1 #N1 #eqH destruct + |2,3,4,5:#Q1 #Q2 #N1 #red1 #_ #eqH destruct + |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 + (@(ex_intro … M1)) % // + |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %2 + (@(ex_intro … N1)) % // + |#Q1 #M1 #red1 #_ #eqH destruct + ] +qed. + +lemma red_app : ∀M,N,P. red (App M N) P → + (∃M1,N1. M = (Lambda M1 N1) ∧ P = N1[0:=N]) ∨ + (∃M1. P = (App M1 N) ∧ red M M1) ∨ + (∃N1. P = (App M N1) ∧ red N N1). +#M #N #P #redMNP (inversion redMNP) + [#P1 #M1 #N1 #eqH destruct #eqP %1 %1 + @(ex_intro … P1) @(ex_intro … M1) % // + |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 %2 + (@(ex_intro … M1)) % // + |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %2 + (@(ex_intro … N1)) % // + |4,5,6,7:#Q1 #Q2 #N1 #red1 #_ #eqH destruct + |#Q1 #M1 #red1 #_ #eqH destruct + ] +qed. + definition reduct ≝ λn,m. red m n. definition SN ≝ WF ? reduct. @@ -78,8 +101,7 @@ qed. lemma NF_Sort: ∀i. NF (Sort i). #i #N % #redN (inversion redN) [1: #P #N #M #H destruct - |2,3 :#N #M #H destruct - |4,5,6,7,8,9: #N #M #P #_ #_ #H destruct + |2,3,4,5,6,7: #N #M #P #_ #_ #H destruct |#M #N #_ #_ #H destruct ] qed. @@ -87,12 +109,116 @@ qed. lemma NF_Rel: ∀i. NF (Rel i). #i #N % #redN (inversion redN) [1: #P #N #M #H destruct - |2,3 :#N #M #H destruct - |4,5,6,7,8,9: #N #M #P #_ #_ #H destruct + |2,3,4,5,6,7: #N #M #P #_ #_ #H destruct |#M #N #_ #_ #H destruct ] qed. +lemma red_subst : ∀N,M,M1,i. red M M1 → red M[i≝N] M1[i≝N]. +#N @Telim_size #P (cases P) + [1,2:#j #Hind #M1 #i #r1 @False_ind /2/ + |#P #Q #Hind #M1 #i #r1 (cases (red_app … r1)) + [* + [* #M2 * #N2 * #eqP #eqM1 >eqP normalize + >eqM1 >(plus_n_O i) >(subst_lemma N2) <(plus_n_O i) + (cut (i+1 =S i)) [//] #Hcut >Hcut @rbeta + |* #M2 * #eqM1 #rP >eqM1 normalize @rappl @Hind /2/ + ] + |* #N2 * #eqM1 #rQ >eqM1 normalize @rappr @Hind /2/ + ] + |#P #Q #Hind #M1 #i #r1 (cases (red_lambda …r1)) + [* #P1 * #eqM1 #redP >eqM1 normalize @rlaml @Hind /2/ + |* #Q1 * #eqM1 #redP >eqM1 normalize @rlamr @Hind /2/ + ] + |#P #Q #Hind #M1 #i #r1 (cases (red_prod …r1)) + [* #P1 * #eqM1 #redP >eqM1 normalize @rprodl @Hind /2/ + |* #P1 * #eqM1 #redP >eqM1 normalize @rprodr @Hind /2/ + ] + |#P #Hind #M1 #i #r1 (cases (red_d …r1)) + #P1 * #eqM1 #redP >eqM1 normalize @d @Hind /2/ + ] +qed. + +lemma red_lift: ∀N,N1,n. red N N1 → ∀k. red (lift N k n) (lift N1 k n). +#N #N1 #n #r1 (elim r1) normalize /2/ +qed. + +(* star red *) +lemma star_appl: ∀M,M1,N. star … red M M1 → + star … red (App M N) (App M1 N). +#M #M1 #N #star1 (elim star1) // +#B #C #starMB #redBC #H @(inj … H) /2/ +qed. + +lemma star_appr: ∀M,N,N1. star … red N N1 → + star … red (App M N) (App M N1). +#M #N #N1 #star1 (elim star1) // +#B #C #starMB #redBC #H @(inj … H) /2/ +qed. + +lemma star_app: ∀M,M1,N,N1. star … red M M1 → star … red N N1 → + star … red (App M N) (App M1 N1). +#M #M1 #N #N1 #redM #redN @(trans_star ??? (App M1 N)) /2/ +qed. + +lemma star_laml: ∀M,M1,N. star … red M M1 → + star … red (Lambda M N) (Lambda M1 N). +#M #M1 #N #star1 (elim star1) // +#B #C #starMB #redBC #H @(inj … H) /2/ +qed. + +lemma star_lamr: ∀M,N,N1. star … red N N1 → + star … red (Lambda M N) (Lambda M N1). +#M #N #N1 #star1 (elim star1) // +#B #C #starMB #redBC #H @(inj … H) /2/ +qed. + +lemma star_lam: ∀M,M1,N,N1. star … red M M1 → star … red N N1 → + star … red (Lambda M N) (Lambda M1 N1). +#M #M1 #N #N1 #redM #redN @(trans_star ??? (Lambda M1 N)) /2/ +qed. + +lemma star_prodl: ∀M,M1,N. star … red M M1 → + star … red (Prod M N) (Prod M1 N). +#M #M1 #N #star1 (elim star1) // +#B #C #starMB #redBC #H @(inj … H) /2/ +qed. + +lemma star_prodr: ∀M,N,N1. star … red N N1 → + star … red (Prod M N) (Prod M N1). +#M #N #N1 #star1 (elim star1) // +#B #C #starMB #redBC #H @(inj … H) /2/ +qed. + +lemma star_prod: ∀M,M1,N,N1. star … red M M1 → star … red N N1 → + star … red (Prod M N) (Prod M1 N1). +#M #M1 #N #N1 #redM #redN @(trans_star ??? (Prod M1 N)) /2/ +qed. + +lemma star_d: ∀M,M1. star … red M M1 → + star … red (D M) (D M1). +#M #M1 #redM (elim redM) // #B #C #starMB #redBC #H @(inj … H) /2/ +qed. + +lemma red_subst1 : ∀M,N,N1,i. red N N1 → + (star … red) M[i≝N] M[i≝N1]. +#M (elim M) + [// + |#i #P #Q #n #r1 (cases (true_or_false (leb i n))) + [#lein (cases (le_to_or_lt_eq i n (leb_true_to_le … lein))) + [#ltin >(subst_rel1 … ltin) >(subst_rel1 … ltin) // + |#eqin >eqin >subst_rel2 >subst_rel2 @R_to_star /2/ + ] + |#lefalse (cut (n < i)) [@not_le_to_lt /2/] #ltni + >(subst_rel3 … ltni) >(subst_rel3 … ltni) // + ] + |#P #Q #Hind1 #Hind2 #M1 #N1 #i #r1 normalize @star_app /2/ + |#P #Q #Hind1 #Hind2 #M1 #N1 #i #r1 normalize @star_lam /2/ + |#P #Q #Hind1 #Hind2 #M1 #N1 #i #r1 normalize @star_prod /2/ + |#P #Hind #M #N #i #r1 normalize @star_d /2/ + ] +qed. + lemma SN_d : ∀M. SN M → SN (D M). #M #snM (elim snM) #b #H #Hind % #a #redd (cases (red_d … redd)) #Q * #eqa #redbQ >eqa @Hind // @@ -102,6 +228,11 @@ lemma SN_step: ∀N. SN N → ∀M. reduct M N → SN M. #N * #b #H #M #red @H //. qed. +lemma SN_star: ∀M,N. (star … red) N M → SN N → SN M. +#M #N #rstar (elim rstar) // +#Q #P #HbQ #redQP #snNQ #snN @(SN_step …redQP) /2/ +qed. + lemma sub_red: ∀M,N.subterm N M → ∀N1.red N N1 → ∃M1.subterm N1 M1 ∧ red M M1. #M #N #subN (elim subN) /4/ @@ -159,34 +290,69 @@ qed. lemma SH_to_SN: ∀N. SH N → SN N. @WF_antimonotonic /2/ qed. -lemma SH_Lambda: ∀N.SN N → ∀M.SN M → SN (Lambda N M). +lemma SN_Lambda: ∀N.SN N → ∀M.SN M → SN (Lambda N M). #N #snN (elim snN) #P #shP #HindP #M #snM (* for M we proceed by induction on SH *) (lapply (SN_to_SH ? snM)) #shM (elim shM) #Q #shQ #HindQ % #a #redH (cases (red_lambda … redH)) - [* - [* #S * #eqa #redPS >eqa @(HindP S ? Q ?) // - @SH_to_SN % /2/ - |* #S * #eqa #redQS >eqa @(HindQ S) /2/ - ] - |* #S * #eqQ #eqa >eqa @SN_d @(HindQ S) /3/ + [* #S * #eqa #redPS >eqa @(HindP S ? Q ?) // + @SH_to_SN % /2/ + |* #S * #eqa #redQS >eqa @(HindQ S) /2/ ] qed. + +lemma SN_Prod: ∀N.SN N → ∀M.SN M → SN (Prod N M). +#N #snN (elim snN) #P #shP #HindP #M #snM (elim snM) +#Q #snQ #HindQ % #a #redH (cases (red_prod … redH)) + [* #S * #eqa #redPS >eqa @(HindP S ? Q ?) // + % /2/ + |* #S * #eqa #redQS >eqa @(HindQ S) /2/ + ] +qed. + +lemma SN_subst: ∀i,N,M.SN M[i ≝ N] → SN M. +#i #N (cut (∀P.SN P → ∀M.P=M[i ≝ N] → SN M)); + [#P #H (elim H) #Q #snQ #Hind #M #eqM % #M1 #redM + @(Hind M1[i:=N]) // >eqM /2/ + |#Hcut #M #snM @(Hcut … snM) // +qed. (* -lemma SH_Lambda: ∀N.SH N → ∀M.SH M → SN (Lambda N M). -#N #snN (elim snN) #P #snP #HindP #M #snM (elim snM) -#Q #snQ #HindQ % #a #redH (cases (red_lambda … redH)) +lemma SN_DAPP: ∀N,M. SN (App M N) → SN (App (D M) N). +cut (∀P. SN P → ∀M,N. P = App M N → SN (App (D M) N)); [|/2/] +#P #snP (elim snP) #Q #snQ #Hind +#M #N #eqQ % #A #rA (cases (red_app … rA)) [* - [* #S * #eqa #redPS >eqa @(HindP S ? Q ?) /2/ - % /2/ - |* #S * #eqa #redQS >eqa @(HindQ S) /2/ + [* + [* #M1 * #N1 * #eqH destruct + |* #M1 * #eqH destruct #eqA >eqA @SN_d % @snQ + ] + |* #M1 * #eqA #red1 (cases (red_d …red1)) + #M2 * #eqM1 #r2 >eqA >eqM1 @(Hind (App M2 N)) /2/ ] - |* #S * #eqQ #eqa >eqa @SN_d @(HindQ S) /3/ + |* #M2 * #eqA >eqA #r2 @(Hind (App M M2)) /2/ ] qed. *) - +lemma SN_APP: ∀P.SN P → ∀N. SN N → ∀M. + SN M[0:=N] → SN (App (Lambda P M) N). +#P #snP (elim snP) #A #snA #HindA +#N #snN (elim snN) #B #snB #HindB +#M #snM1 (cut (SH M)) [@SN_to_SH @(SN_subst … snM1)] #shM +(generalize in match snM1) (elim shM) +#C #shC #HindC #snC1 % #Q #redQ (cases (red_app … redQ)) + [* + [* #M2 * #N2 * #eqlam destruct #eqQ // + |* #M2 * #eqQ #redlam >eqQ (cases (red_lambda …redlam)) + [* #M3 * #eqM2 #r2 >eqM2 @HindA // % /2/ + |* #M3 * #eqM2 #r2 >eqM2 @HindC; + [%1 // |@(SN_step … snC1) /2/] + ] + ] + |* #M2 * #eqQ #r2 >eqQ @HindB // @(SN_star … snC1) + @red_subst1 // + ] +qed.