X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2FlambdaN%2Freduction.ma;h=82891b23b2a3421f7183dbbf9653493674c328d8;hb=ef3bdc4be26f6518a82a79c64e986253f7aeaa3c;hp=58e4e179aab1ff9e6f8fa935d257bf0749c9125e;hpb=15190ed1fb47989f2d50261db7991186ec3d5e47;p=helm.git diff --git a/matita/matita/lib/lambdaN/reduction.ma b/matita/matita/lib/lambdaN/reduction.ma index 58e4e179a..82891b23b 100644 --- a/matita/matita/lib/lambdaN/reduction.ma +++ b/matita/matita/lib/lambdaN/reduction.ma @@ -9,7 +9,7 @@ \ / V_______________________________________________________________ *) -include "lambda/par_reduction.ma". +include "lambdaN/par_reduction.ma". include "basics/star.ma". (* @@ -30,17 +30,23 @@ inductive red : T →T → Prop ≝ | rlamr: ∀M,N,N1. red N N1 → red(Lambda M N) (Lambda M N1) | rprodl: ∀M,M1,N. red M M1 → red (Prod M N) (Prod M1 N) | rprodr: ∀M,N,N1. red N N1 → red (Prod M N) (Prod M N1) - | d: ∀M,M1. red M M1 → red (D M) (D M1). + | dl: ∀M,M1,N. red M M1 → red (D M N) (D M1 N) + | dr: ∀M,N,N1. red N N1 → red (D M N) (D M N1). lemma red_to_pr: ∀M,N. red M N → pr M N. #M #N #redMN (elim redMN) /2/ qed. -lemma red_d : ∀M,P. red (D M) P → ∃N. P = D N ∧ red M N. -#M #P #redMP (inversion redMP) +lemma red_d : ∀M,N,P. red (D M N) P → + (∃M1. P = D M1 N ∧ red M M1) ∨ + (∃N1. P = D M N1 ∧ red N N1). +#M #N #P #redMP (inversion redMP) [#P1 #M1 #N1 #eqH destruct |2,3,4,5,6,7:#Q1 #Q2 #N1 #red1 #_ #eqH destruct - |#Q1 #M1 #red1 #_ #eqH destruct #eqP @(ex_intro … M1) /2/ + |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP + %1 @(ex_intro … M1) /2/ + |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP + %2 @(ex_intro … N1) /2/ ] qed. @@ -49,12 +55,11 @@ lemma red_lambda : ∀M,N,P. red (Lambda M N) P → (∃N1. P = (Lambda M N1) ∧ red N N1). #M #N #P #redMNP (inversion redMNP) [#P1 #M1 #N1 #eqH destruct - |2,3,6,7:#Q1 #Q2 #N1 #red1 #_ #eqH destruct + |2,3,6,7,8,9:#Q1 #Q2 #N1 #red1 #_ #eqH destruct |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 (@(ex_intro … M1)) % // |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %2 (@(ex_intro … N1)) % // - |#Q1 #M1 #red1 #_ #eqH destruct ] qed. @@ -63,12 +68,11 @@ lemma red_prod : ∀M,N,P. red (Prod M N) P → (∃N1. P = (Prod M N1) ∧ red N N1). #M #N #P #redMNP (inversion redMNP) [#P1 #M1 #N1 #eqH destruct - |2,3,4,5:#Q1 #Q2 #N1 #red1 #_ #eqH destruct + |2,3,4,5,8,9:#Q1 #Q2 #N1 #red1 #_ #eqH destruct |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 (@(ex_intro … M1)) % // |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %2 (@(ex_intro … N1)) % // - |#Q1 #M1 #red1 #_ #eqH destruct ] qed. @@ -83,8 +87,7 @@ lemma red_app : ∀M,N,P. red (App M N) P → (@(ex_intro … M1)) % // |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %2 (@(ex_intro … N1)) % // - |4,5,6,7:#Q1 #Q2 #N1 #red1 #_ #eqH destruct - |#Q1 #M1 #red1 #_ #eqH destruct + |4,5,6,7,8,9:#Q1 #Q2 #N1 #red1 #_ #eqH destruct ] qed. @@ -101,16 +104,14 @@ qed. lemma NF_Sort: ∀i. NF (Sort i). #i #N % #redN (inversion redN) [1: #P #N #M #H destruct - |2,3,4,5,6,7: #N #M #P #_ #_ #H destruct - |#M #N #_ #_ #H destruct + |2,3,4,5,6,7,8,9: #N #M #P #_ #_ #H destruct ] qed. lemma NF_Rel: ∀i. NF (Rel i). #i #N % #redN (inversion redN) [1: #P #N #M #H destruct - |2,3,4,5,6,7: #N #M #P #_ #_ #H destruct - |#M #N #_ #_ #H destruct + |2,3,4,5,6,7,8,9: #N #M #P #_ #_ #H destruct ] qed. @@ -134,9 +135,10 @@ lemma red_subst : ∀N,M,M1,i. red M M1 → red M[i≝N] M1[i≝N]. [* #P1 * #eqM1 #redP >eqM1 normalize @rprodl @Hind /2/ |* #P1 * #eqM1 #redP >eqM1 normalize @rprodr @Hind /2/ ] - |#P #Hind #M1 #i #r1 (cases (red_d …r1)) - #P1 * #eqM1 #redP >eqM1 normalize @d @Hind /2/ - ] + |#P #Q #Hind #M1 #i #r1 (cases (red_d …r1)) + [* #P1 * #eqM1 #redP >eqM1 normalize @dl @Hind /2/ + |* #P1 * #eqM1 #redP >eqM1 normalize @dr @Hind /2/ + ] qed. lemma red_lift: ∀N,N1,n. red N N1 → ∀k. red (lift N k n) (lift N1 k n). @@ -152,7 +154,7 @@ qed. lemma star_appr: ∀M,N,N1. star … red N N1 → star … red (App M N) (App M N1). -#M #N #N1 #star1 (elim star1) // +#M #N #N1 #star1 (elim star1) // #B #C #starMB #redBC #H @(inj … H) /2/ qed. @@ -195,9 +197,21 @@ lemma star_prod: ∀M,M1,N,N1. star … red M M1 → star … red N N1 → #M #M1 #N #N1 #redM #redN @(trans_star ??? (Prod M1 N)) /2/ qed. -lemma star_d: ∀M,M1. star … red M M1 → - star … red (D M) (D M1). -#M #M1 #redM (elim redM) // #B #C #starMB #redBC #H @(inj … H) /2/ +lemma star_dl: ∀M,M1,N. star … red M M1 → + star … red (D M N) (D M1 N). +#M #M1 #N #star1 (elim star1) // +#B #C #starMB #redBC #H @(inj … H) /2/ +qed. + +lemma star_dr: ∀M,N,N1. star … red N N1 → + star … red (D M N) (D M N1). +#M #N #N1 #star1 (elim star1) // +#B #C #starMB #redBC #H @(inj … H) /2/ +qed. + +lemma star_d: ∀M,M1,N,N1. star … red M M1 → star … red N N1 → + star … red (D M N) (D M1 N1). +#M #M1 #N #N1 #redM #redN @(trans_star ??? (D M1 N)) /2/ qed. lemma red_subst1 : ∀M,N,N1,i. red N N1 → @@ -215,13 +229,17 @@ lemma red_subst1 : ∀M,N,N1,i. red N N1 → |#P #Q #Hind1 #Hind2 #M1 #N1 #i #r1 normalize @star_app /2/ |#P #Q #Hind1 #Hind2 #M1 #N1 #i #r1 normalize @star_lam /2/ |#P #Q #Hind1 #Hind2 #M1 #N1 #i #r1 normalize @star_prod /2/ - |#P #Hind #M #N #i #r1 normalize @star_d /2/ + |#P #Q #Hind1 #Hind2 #M1 #N1 #i #r1 normalize @star_d /2/ ] qed. -lemma SN_d : ∀M. SN M → SN (D M). -#M #snM (elim snM) #b #H #Hind % #a #redd (cases (red_d … redd)) -#Q * #eqa #redbQ >eqa @Hind // +lemma SN_d : ∀M. SN M → ∀N. SN N → SN (D M N). +#M #snM (elim snM) #b #H #Hind +#N #snN (elim snN) #c #H1 #Hind1 % #a #redd +(cases (red_d … redd)) + [* #Q * #eqa #redbQ >eqa @Hind // % /2/ + |* #Q * #eqa #redbQ >eqa @Hind1 // + ] qed. lemma SN_step: ∀N. SN N → ∀M. reduct M N → SN M.