X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fre%2Fre.ma;h=234d522ae176dde98579f39ac9e6ac09bb11aa32;hb=0c302a9fda708e5019e48d14c5419a8a65190745;hp=dadd3db3e9d0e77fb0095b997c8af682ffb5d9c7;hpb=a2a302a15f8c6773a12de044146c8002dbe14b11;p=helm.git diff --git a/matita/matita/lib/re/re.ma b/matita/matita/lib/re/re.ma index dadd3db3e..234d522ae 100644 --- a/matita/matita/lib/re/re.ma +++ b/matita/matita/lib/re/re.ma @@ -1,5 +1,3 @@ - - (**************************************************************************) (* ___ *) (* ||M|| *) @@ -14,81 +12,39 @@ (* *) (**************************************************************************) -include "arithmetics/nat.ma". -include "basics/list.ma". - -interpretation "iff" 'iff a b = (iff a b). +include "re/lang.ma". -record Alpha : Type[1] ≝ { carr :> Type[0]; - eqb: carr → carr → bool; - eqb_true: ∀x,y. (eqb x y = true) ↔ (x = y) -}. - -notation "a == b" non associative with precedence 45 for @{ 'eqb $a $b }. -interpretation "eqb" 'eqb a b = (eqb ? a b). - -definition word ≝ λS:Alpha.list S. +(* The type re of regular expressions over an alphabet $S$ is the smallest +collection of objects generated by the following constructors: *) -inductive re (S: Alpha) : Type[0] ≝ +inductive re (S: DeqSet) : Type[0] ≝ z: re S | e: re S | s: S → re S | c: re S → re S → re S | o: re S → re S → re S | k: re S → re S. - -(* notation < "a \sup ⋇" non associative with precedence 90 for @{ 'pk $a}.*) -notation "a ^ *" non associative with precedence 90 for @{ 'pk $a}. -interpretation "star" 'pk a = (k ? a). -interpretation "or" 'plus a b = (o ? a b). - -notation "a · b" non associative with precedence 60 for @{ 'pc $a $b}. -interpretation "cat" 'pc a b = (c ? a b). - -(* to get rid of \middot -ncoercion c : ∀S:Alpha.∀p:re S. re S → re S ≝ c on _p : re ? to ∀_:?.?. -*) + +interpretation "re epsilon" 'epsilon = (e ?). +interpretation "re or" 'plus a b = (o ? a b). +interpretation "re cat" 'middot a b = (c ? a b). +interpretation "re star" 'star a = (k ? a). notation < "a" non associative with precedence 90 for @{ 'ps $a}. notation > "` term 90 a" non associative with precedence 90 for @{ 'ps $a}. interpretation "atom" 'ps a = (s ? a). -notation "ϵ" non associative with precedence 90 for @{ 'epsilon }. -interpretation "epsilon" 'epsilon = (e ?). - -notation "∅" non associative with precedence 90 for @{ 'empty }. +notation "`∅" non associative with precedence 90 for @{ 'empty }. interpretation "empty" 'empty = (z ?). -let rec flatten (S : Alpha) (l : list (word S)) on l : word S ≝ -match l with [ nil ⇒ [ ] | cons w tl ⇒ w @ flatten ? tl ]. - -let rec conjunct (S : Alpha) (l : list (word S)) (r : word S → Prop) on l: Prop ≝ -match l with [ nil ⇒ ? | cons w tl ⇒ r w ∧ conjunct ? tl r ]. -// qed. - -definition empty_lang ≝ λS.λw:word S.False. -notation "{}" non associative with precedence 90 for @{'empty_lang}. -interpretation "empty lang" 'empty_lang = (empty_lang ?). - -definition sing_lang ≝ λS.λx,w:word S.x=w. -(* notation "{x}" non associative with precedence 90 for @{'sing_lang $x}.*) -interpretation "sing lang" 'singl x = (sing_lang ? x). - -definition union : ∀S,l1,l2,w.Prop ≝ λS.λl1,l2.λw:word S.l1 w ∨ l2 w. -interpretation "union lang" 'union a b = (union ? a b). +(* The language sem{e} associated with the regular expression e is inductively +defined by the following function: *) -definition cat : ∀S,l1,l2,w.Prop ≝ - λS.λl1,l2.λw:word S.∃w1,w2.w1 @ w2 = w ∧ l1 w1 ∧ l2 w2. -interpretation "cat lang" 'pc a b = (cat ? a b). - -definition star ≝ λS.λl.λw:word S.∃lw.flatten ? lw = w ∧ conjunct ? lw l. -interpretation "star lang" 'pk l = (star ? l). - -let rec in_l (S : Alpha) (r : re S) on r : word S → Prop ≝ +let rec in_l (S : DeqSet) (r : re S) on r : word S → Prop ≝ match r with -[ z ⇒ {} -| e ⇒ { [ ] } -| s x ⇒ { [x] } +[ z ⇒ ∅ +| e ⇒ {ϵ} +| s x ⇒ {[x]} | c r1 r2 ⇒ (in_l ? r1) · (in_l ? r2) | o r1 r2 ⇒ (in_l ? r1) ∪ (in_l ? r2) | k r1 ⇒ (in_l ? r1) ^*]. @@ -97,15 +53,41 @@ notation "\sem{term 19 E}" non associative with precedence 75 for @{'in_l $E}. interpretation "in_l" 'in_l E = (in_l ? E). interpretation "in_l mem" 'mem w l = (in_l ? l w). -notation "a || b" left associative with precedence 30 for @{'orb $a $b}. -interpretation "orb" 'orb a b = (orb a b). - -definition if_then_else ≝ λT:Type[0].λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f]. -notation > "'if' term 19 e 'then' term 19 t 'else' term 19 f" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. -notation < "'if' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. -interpretation "if_then_else" 'if_then_else e t f = (if_then_else ? e t f). +lemma rsem_star : ∀S.∀r: re S. \sem{r^*} = \sem{r}^*. +// qed. -inductive pitem (S: Alpha) : Type[0] ≝ +(* +Pointed Regular expressions + +We now introduce pointed regular expressions, that are the main tool we shall +use for the construction of the automaton. +A pointed regular expression is just a regular expression internally labelled +with some additional points. Intuitively, points mark the positions inside the +regular expression which have been reached after reading some prefix of +the input string, or better the positions where the processing of the remaining +string has to be started. Each pointed expression for $e$ represents a state of +the {\em deterministic} automaton associated with $e$; since we obviously have +only a finite number of possible labellings, the number of states of the automaton +is finite. + +Pointed regular expressions provide the tool for an algebraic revisitation of +McNaughton and Yamada's algorithm for position automata, making the proof of its +correctness, that is far from trivial, particularly clear and simple. In particular, +pointed expressions offer an appealing alternative to Brzozowski's derivatives, +avoiding their weakest point, namely the fact of being forced to quotient derivatives +w.r.t. a suitable notion of equivalence in order to get a finite number of states +(that is not essential for recognizing strings, but is crucial for comparing regular +expressions). + +Our main data structure is the notion of pointed item, that is meant whose purpose +is to encode a set of positions inside a regular expression. +The idea of formalizing pointers inside a data type by means of a labelled version +of the data type itself is probably one of the first, major lessons learned in the +formalization of the metatheory of programming languages. For our purposes, it is +enough to mark positions preceding individual characters, so we shall have two kinds +of characters •a (pp a) and a (ps a) according to the case a is pointed or not. *) + +inductive pitem (S: DeqSet) : Type[0] ≝ pz: pitem S | pe: pitem S | ps: S → pitem S @@ -114,40 +96,132 @@ inductive pitem (S: Alpha) : Type[0] ≝ | po: pitem S → pitem S → pitem S | pk: pitem S → pitem S. +(* A pointed regular expression (pre) is just a pointed item with an additional +boolean, that must be understood as the possibility to have a trailing point at +the end of the expression. As we shall see, pointed regular expressions can be +understood as states of a DFA, and the boolean indicates if +the state is final or not. *) + definition pre ≝ λS.pitem S × bool. -interpretation "pstar" 'pk a = (pk ? a). -interpretation "por" 'plus a b = (po ? a b). -interpretation "pcat" 'pc a b = (pc ? a b). +interpretation "pitem star" 'star a = (pk ? a). +interpretation "pitem or" 'plus a b = (po ? a b). +interpretation "pitem cat" 'middot a b = (pc ? a b). notation < ".a" non associative with precedence 90 for @{ 'pp $a}. notation > "`. term 90 a" non associative with precedence 90 for @{ 'pp $a}. -interpretation "ppatom" 'pp a = (pp ? a). -(* to get rid of \middot -ncoercion pc : ∀S.∀p:pitem S. pitem S → pitem S ≝ pc on _p : pitem ? to ∀_:?.?. -*) -interpretation "patom" 'ps a = (ps ? a). -interpretation "pepsilon" 'epsilon = (pe ?). -interpretation "pempty" 'empty = (pz ?). +interpretation "pitem pp" 'pp a = (pp ? a). +interpretation "pitem ps" 'ps a = (ps ? a). +interpretation "pitem epsilon" 'epsilon = (pe ?). +interpretation "pitem empty" 'empty = (pz ?). -let rec forget (S: Alpha) (l : pitem S) on l: re S ≝ +(* The carrier $|i|$ of an item i is the regular expression obtained from i by +removing all the points. Similarly, the carrier of a pointed regular expression +is the carrier of its item. *) + +let rec forget (S: DeqSet) (l : pitem S) on l: re S ≝ match l with - [ pz ⇒ ∅ + [ pz ⇒ `∅ | pe ⇒ ϵ | ps x ⇒ `x | pp x ⇒ `x | pc E1 E2 ⇒ (forget ? E1) · (forget ? E2) | po E1 E2 ⇒ (forget ? E1) + (forget ? E2) | pk E ⇒ (forget ? E)^* ]. - -(* notation < "|term 19 e|" non associative with precedence 70 for @{'forget $e}.*) -interpretation "forget" 'norm a = (forget ? a). + +interpretation "forget" 'card a = (forget ? a). + +lemma erase_dot : ∀S.∀e1,e2:pitem S. |e1 · e2| = c ? (|e1|) (|e2|). +// qed. + +lemma erase_plus : ∀S.∀i1,i2:pitem S. + |i1 + i2| = |i1| + |i2|. +// qed. + +lemma erase_star : ∀S.∀i:pitem S.|i^*| = |i|^*. +// qed. + +(* +Comparing items and pres + +Items and pres are very concrete datatypes: they can be effectively compared, +and enumerated. In particular, we can define a boolean equality beqitem and a proof +beqitem_true that it refects propositional equality, enriching the set (pitem S) +to a DeqSet. *) + +let rec beqitem S (i1,i2: pitem S) on i1 ≝ + match i1 with + [ pz ⇒ match i2 with [ pz ⇒ true | _ ⇒ false] + | pe ⇒ match i2 with [ pe ⇒ true | _ ⇒ false] + | ps y1 ⇒ match i2 with [ ps y2 ⇒ y1==y2 | _ ⇒ false] + | pp y1 ⇒ match i2 with [ pp y2 ⇒ y1==y2 | _ ⇒ false] + | po i11 i12 ⇒ match i2 with + [ po i21 i22 ⇒ beqitem S i11 i21 ∧ beqitem S i12 i22 + | _ ⇒ false] + | pc i11 i12 ⇒ match i2 with + [ pc i21 i22 ⇒ beqitem S i11 i21 ∧ beqitem S i12 i22 + | _ ⇒ false] + | pk i11 ⇒ match i2 with [ pk i21 ⇒ beqitem S i11 i21 | _ ⇒ false] + ]. + +lemma beqitem_true: ∀S,i1,i2. iff (beqitem S i1 i2 = true) (i1 = i2). +#S #i1 elim i1 + [#i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % // normalize #H destruct + |#i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % // normalize #H destruct + |#x #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % normalize #H destruct + [>(\P H) // | @(\b (refl …))] + |#x #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % normalize #H destruct + [>(\P H) // | @(\b (refl …))] + |#i11 #i12 #Hind1 #Hind2 #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % + normalize #H destruct + [cases (true_or_false (beqitem S i11 i21)) #H1 + [>(proj1 … (Hind1 i21) H1) >(proj1 … (Hind2 i22)) // >H1 in H; #H @H + |>H1 in H; normalize #abs @False_ind /2/ + ] + |>(proj2 … (Hind1 i21) (refl …)) >(proj2 … (Hind2 i22) (refl …)) // + ] + |#i11 #i12 #Hind1 #Hind2 #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % + normalize #H destruct + [cases (true_or_false (beqitem S i11 i21)) #H1 + [>(proj1 … (Hind1 i21) H1) >(proj1 … (Hind2 i22)) // >H1 in H; #H @H + |>H1 in H; normalize #abs @False_ind /2/ + ] + |>(proj2 … (Hind1 i21) (refl …)) >(proj2 … (Hind2 i22) (refl …)) // + ] + |#i3 #Hind #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i4] % + normalize #H destruct + [>(proj1 … (Hind i4) H) // |>(proj2 … (Hind i4) (refl …)) //] + ] +qed. + +definition DeqItem ≝ λS. + mk_DeqSet (pitem S) (beqitem S) (beqitem_true S). + +(* We also add a couple of unification hints to allow the type inference system +to look at (pitem S) as the carrier of a DeqSet, and at beqitem as if it was the +equality function of a DeqSet. *) + +unification hint 0 ≔ S; + X ≟ mk_DeqSet (pitem S) (beqitem S) (beqitem_true S) +(* ---------------------------------------- *) ⊢ + pitem S ≡ carr X. + +unification hint 0 ≔ S,i1,i2; + X ≟ mk_DeqSet (pitem S) (beqitem S) (beqitem_true S) +(* ---------------------------------------- *) ⊢ + beqitem S i1 i2 ≡ eqb X i1 i2. + +(* +Semantics of pointed regular expressions +The intuitive semantic of a point is to mark the position where +we should start reading the regular expression. The language associated +to a pre is the union of the languages associated with its points. *) -let rec in_pl (S : Alpha) (r : pitem S) on r : word S → Prop ≝ +let rec in_pl (S : DeqSet) (r : pitem S) on r : word S → Prop ≝ match r with -[ pz ⇒ {} -| pe ⇒ {} -| ps _ ⇒ {} +[ pz ⇒ ∅ +| pe ⇒ ∅ +| ps _ ⇒ ∅ | pp x ⇒ { [x] } | pc r1 r2 ⇒ (in_pl ? r1) · \sem{forget ? r2} ∪ (in_pl ? r2) | po r1 r2 ⇒ (in_pl ? r1) ∪ (in_pl ? r2) @@ -156,20 +230,16 @@ match r with interpretation "in_pl" 'in_l E = (in_pl ? E). interpretation "in_pl mem" 'mem w l = (in_pl ? l w). -definition epsilon ≝ λS,b.if b then { ([ ] : word S) } else {}. - -interpretation "epsilon" 'epsilon = (epsilon ?). -notation < "ϵ b" non associative with precedence 90 for @{'app_epsilon $b}. -interpretation "epsilon lang" 'app_epsilon b = (epsilon ? b). - -definition in_prl ≝ λS : Alpha.λp:pre S. - if (\snd p) then \sem{\fst p} ∪ { ([ ] : word S) } else \sem{\fst p}. +definition in_prl ≝ λS : DeqSet.λp:pre S. + if (\snd p) then \sem{\fst p} ∪ {ϵ} else \sem{\fst p}. interpretation "in_prl mem" 'mem w l = (in_prl ? l w). interpretation "in_prl" 'in_l E = (in_prl ? E). +(* The following, trivial lemmas are only meant for rewriting purposes. *) + lemma sem_pre_true : ∀S.∀i:pitem S. - \sem{〈i,true〉} = \sem{i} ∪ { ([ ] : word S) }. + \sem{〈i,true〉} = \sem{i} ∪ {ϵ}. // qed. lemma sem_pre_false : ∀S.∀i:pitem S. @@ -180,18 +250,38 @@ lemma sem_cat: ∀S.∀i1,i2:pitem S. \sem{i1 · i2} = \sem{i1} · \sem{|i2|} ∪ \sem{i2}. // qed. +lemma sem_cat_w: ∀S.∀i1,i2:pitem S.∀w. + \sem{i1 · i2} w = ((\sem{i1} · \sem{|i2|}) w ∨ \sem{i2} w). +// qed. + lemma sem_plus: ∀S.∀i1,i2:pitem S. \sem{i1 + i2} = \sem{i1} ∪ \sem{i2}. // qed. +lemma sem_plus_w: ∀S.∀i1,i2:pitem S.∀w. + \sem{i1 + i2} w = (\sem{i1} w ∨ \sem{i2} w). +// qed. + lemma sem_star : ∀S.∀i:pitem S. \sem{i^*} = \sem{i} · \sem{|i|}^*. // qed. -lemma append_eq_nil : ∀S.∀w1,w2:word S. w1 @ w2 = [ ] → w1 = [ ]. +lemma sem_star_w : ∀S.∀i:pitem S.∀w. + \sem{i^*} w = (∃w1,w2.w1 @ w2 = w ∧ \sem{i} w1 ∧ \sem{|i|}^* w2). +// qed. + +(* Below are a few, simple, semantic properties of items. In particular: +- not_epsilon_item : ∀S:DeqSet.∀i:pitem S. ¬ (\sem{i} ϵ). +- epsilon_pre : ∀S.∀e:pre S. (\sem{i} ϵ) ↔ (\snd e = true). +- minus_eps_item: ∀S.∀i:pitem S. \sem{i} ≐ \sem{i}-{[ ]}. +- minus_eps_pre: ∀S.∀e:pre S. \sem{\fst e} ≐ \sem{e}-{[ ]}. +The first property is proved by a simple induction on $i$; the other +results are easy corollaries. We need an auxiliary lemma first. *) + +lemma append_eq_nil : ∀S.∀w1,w2:word S. w1 @ w2 = ϵ → w1 = ϵ. #S #w1 #w2 cases w1 // #a #tl normalize #H destruct qed. -lemma not_epsilon_lp : ∀S:Alpha.∀e:pitem S. ¬ ([ ] ∈ e). +lemma not_epsilon_lp : ∀S:DeqSet.∀e:pitem S. ¬ (ϵ ∈ e). #S #e elim e normalize /2/ [#r1 #r2 * #n1 #n2 % * /2/ * #w1 * #w2 * * #H >(append_eq_nil …H…) /2/ @@ -200,186 +290,173 @@ lemma not_epsilon_lp : ∀S:Alpha.∀e:pitem S. ¬ ([ ] ∈ e). ] qed. -(* lemma 12 *) -lemma epsilon_to_true : ∀S.∀e:pre S. [ ] ∈ e → \snd e = true. +lemma epsilon_to_true : ∀S.∀e:pre S. ϵ ∈ e → \snd e = true. #S * #i #b cases b // normalize #H @False_ind /2/ qed. -lemma true_to_epsilon : ∀S.∀e:pre S. \snd e = true → [ ] ∈ e. -#S * #i #b #btrue normalize in btrue >btrue %2 // +lemma true_to_epsilon : ∀S.∀e:pre S. \snd e = true → ϵ ∈ e. +#S * #i #b #btrue normalize in btrue; >btrue %2 // +qed. + +lemma minus_eps_item: ∀S.∀i:pitem S. \sem{i} ≐ \sem{i}-{[ ]}. +#S #i #w % + [#H whd % // normalize @(not_to_not … (not_epsilon_lp …i)) // + |* // + ] +qed. + +lemma minus_eps_pre: ∀S.∀e:pre S. \sem{\fst e} ≐ \sem{e}-{[ ]}. +#S * #i * + [>sem_pre_true normalize in ⊢ (??%?); #w % + [/3/ | * * // #H1 #H2 @False_ind @(absurd …H1 H2)] + |>sem_pre_false normalize in ⊢ (??%?); #w % [ /3/ | * // ] + ] qed. -definition lo ≝ λS:Alpha.λa,b:pre S.〈\fst a + \fst b,\snd a || \snd b〉. -notation "a ⊕ b" left associative with precedence 60 for @{'oplus $a $b}. +(* +Broadcasting points + +Intuitively, a regular expression e must be understood as a pointed expression with a single +point in front of it. Since however we only allow points before symbols, we must broadcast +this initial point inside e traversing all nullable subexpressions, that essentially corresponds +to the ϵ-closure operation on automata. We use the notation •(_) to denote such an operation; +its definition is the expected one: let us start discussing an example. + +Example +Let us broadcast a point inside (a + ϵ)(b*a + b)b. We start working in parallel on the +first occurrence of a (where the point stops), and on ϵ that gets traversed. We have hence +reached the end of a + ϵ and we must pursue broadcasting inside (b*a + b)b. Again, we work in +parallel on the two additive subterms b^*a and b; the first point is allowed to both enter the +star, and to traverse it, stopping in front of a; the second point just stops in front of b. +No point reached that end of b^*a + b hence no further propagation is possible. In conclusion: + •((a + ϵ)(b^*a + b)b) = 〈(•a + ϵ)((•b)^*•a + •b)b, false〉 +*) + +(* Broadcasting a point inside an item generates a pre, since the point could possibly reach +the end of the expression. +Broadcasting inside a i1+i2 amounts to broadcast in parallel inside i1 and i2. +If we define + 〈i1,b1〉 ⊕ 〈i2,b2〉 = 〈i1 + i2, b1 ∨ b2〉 +then, we just have •(i1+i2) = •(i1)⊕ •(i2). +*) + +definition lo ≝ λS:DeqSet.λa,b:pre S.〈\fst a + \fst b,\snd a ∨ \snd b〉. +notation "a ⊕ b" left associative with precedence 65 for @{'oplus $a $b}. interpretation "oplus" 'oplus a b = (lo ? a b). -lemma lo_def: ∀S.∀i1,i2:pitem S.∀b1,b2. 〈i1,b1〉⊕〈i2,b2〉=〈i1+i2,b1||b2〉. +lemma lo_def: ∀S.∀i1,i2:pitem S.∀b1,b2. 〈i1,b1〉⊕〈i2,b2〉=〈i1+i2,b1∨b2〉. // qed. -definition pre_concat_r ≝ λS:Alpha.λi:pitem S.λe:pre S. - match e with [ pair i1 b ⇒ 〈i · i1, b〉]. +(* +Concatenation is a bit more complex. In order to broadcast a point inside i1 · i2 +we should start broadcasting it inside i1 and then proceed into i2 if and only if a +point reached the end of i1. This suggests to define •(i1 · i2) as •(i1) ▹ i2, where +e ▹ i is a general operation of concatenation between a pre and an item, defined by +cases on the boolean in e: + + 〈i1,true〉 ▹ i2 = i1 ◃ •(i_2) + 〈i1,false〉 ▹ i2 = i1 · i2 + +In turn, ◃ says how to concatenate an item with a pre, that is however extremely simple: + + i1 ◃ 〈i1,b〉 = 〈i_1 · i2, b〉 + +Let us come to the formalized definitions: +*) + +definition pre_concat_r ≝ λS:DeqSet.λi:pitem S.λe:pre S. + match e with [ mk_Prod i1 b ⇒ 〈i · i1, b〉]. -notation "i ▸ e" left associative with precedence 60 for @{'trir $i $e}. -interpretation "pre_concat_r" 'trir i e = (pre_concat_r ? i e). - -definition eq_f1 ≝ λS.λa,b:word S → Prop.∀w.a w ↔ b w. -notation "A =1 B" non associative with precedence 45 for @{'eq_f1 $A $B}. -interpretation "eq f1" 'eq_f1 a b = (eq_f1 ? a b). +notation "i ◃ e" left associative with precedence 65 for @{'lhd $i $e}. +interpretation "pre_concat_r" 'lhd i e = (pre_concat_r ? i e). + +(* The behaviour of ◃ is summarized by the following, easy lemma: *) lemma eq_to_ex_eq: ∀S.∀A,B:word S → Prop. - A = B → A =1 B. + A = B → A ≐ B. #S #A #B #H >H /2/ qed. -lemma ext_eq_trans: ∀S.∀A,B,C:word S → Prop. - A =1 B → B =1 C → A =1 C. -#S #A #B #C #eqAB #eqBC #w cases (eqAB w) cases (eqBC w) /4/ -qed. - -lemma union_assoc: ∀S.∀A,B,C:word S → Prop. - A ∪ B ∪ C =1 A ∪ (B ∪ C). -#S #A #B #C #w % [* [* /3/ | /3/] | * [/3/ | * /3/] -qed. - lemma sem_pre_concat_r : ∀S,i.∀e:pre S. - \sem{i ▸ e} =1 \sem{i} · \sem{|\fst e|} ∪ \sem{e}. -#S #i * #i1 #b1 cases b1 /2/ + \sem{i ◃ e} ≐ \sem{i} · \sem{|\fst e|} ∪ \sem{e}. +#S #i * #i1 #b1 cases b1 [2: @eq_to_ex_eq //] >sem_pre_true >sem_cat >sem_pre_true /2/ qed. - -definition lc ≝ λS:Alpha.λbcast:∀S:Alpha.pitem S → pre S.λe1:pre S.λi2:pitem S. + +(* The definition of $•(-)$ (eclose) and ▹ (pre_concat_l) are mutually recursive. +In this situation, a viable alternative that is usually simpler to reason about, +is to abstract one of the two functions with respect to the other. In particular +we abstract pre_concat_l with respect to an input bcast function from items to +pres. *) + +definition pre_concat_l ≝ λS:DeqSet.λbcast:∀S:DeqSet.pitem S → pre S.λe1:pre S.λi2:pitem S. match e1 with - [ pair i1 b1 ⇒ match b1 with - [ true ⇒ (i1 ▸ (bcast ? i2)) + [ mk_Prod i1 b1 ⇒ match b1 with + [ true ⇒ (i1 ◃ (bcast ? i2)) | false ⇒ 〈i1 · i2,false〉 ] ]. - -definition lift ≝ λf:∀S.pitem S →pre S.λS.λe:pre S. - match e with - [ pair i b ⇒ 〈\fst (f S i), \snd (f S i) || b〉]. - -notation < "a ⊙ b" left associative with precedence 60 for @{'lc $op $a $b}. -interpretation "lc" 'lc op a b = (lc ? op a b). -notation > "a ⊙ b" left associative with precedence 60 for @{'lc eclose $a $b}. -definition lk ≝ λS:Alpha.λbcast:∀S:Alpha.∀E:pitem S.pre S.λe:pre S. - match e with - [ pair i1 b1 ⇒ - match b1 with - [true ⇒ 〈(\fst (bcast ? i1))^*, true〉 - |false ⇒ 〈i1^*,true〉 - ] - ]. +notation "a ▹ b" left associative with precedence 65 for @{'tril eclose $a $b}. +interpretation "item-pre concat" 'tril op a b = (pre_concat_l ? op a b). -(* notation < "a \sup ⊛" non associative with precedence 90 for @{'lk $op $a}.*) -interpretation "lk" 'lk op a = (lk ? op a). -notation > "a^⊛" non associative with precedence 90 for @{'lk eclose $a}. +notation "•" non associative with precedence 65 for @{eclose ?}. -notation > "•" non associative with precedence 60 for @{eclose ?}. +(* We are ready to give the formal definition of the broadcasting operation. *) -let rec eclose (S: Alpha) (i: pitem S) on i : pre S ≝ +let rec eclose (S: DeqSet) (i: pitem S) on i : pre S ≝ match i with - [ pz ⇒ 〈 ∅, false 〉 + [ pz ⇒ 〈 `∅, false 〉 | pe ⇒ 〈 ϵ, true 〉 | ps x ⇒ 〈 `.x, false〉 | pp x ⇒ 〈 `.x, false 〉 | po i1 i2 ⇒ •i1 ⊕ •i2 - | pc i1 i2 ⇒ •i1 ⊙ i2 - | pk i ⇒ 〈(\fst(•i))^*,true〉]. - + | pc i1 i2 ⇒ •i1 ▹ i2 + | pk i ⇒ 〈(\fst (•i))^*,true〉]. -notation "• x" non associative with precedence 60 for @{'eclose $x}. +notation "• x" non associative with precedence 65 for @{'eclose $x}. interpretation "eclose" 'eclose x = (eclose ? x). -lemma eclose_plus: ∀S:Alpha.∀i1,i2:pitem S. +(* Here are a few simple properties of ▹ and •(-) *) + +lemma eclose_plus: ∀S:DeqSet.∀i1,i2:pitem S. •(i1 + i2) = •i1 ⊕ •i2. // qed. -lemma eclose_dot: ∀S:Alpha.∀i1,i2:pitem S. - •(i1 · i2) = •i1 ⊙ i2. +lemma eclose_dot: ∀S:DeqSet.∀i1,i2:pitem S. + •(i1 · i2) = •i1 ▹ i2. // qed. -lemma eclose_star: ∀S:Alpha.∀i:pitem S. +lemma eclose_star: ∀S:DeqSet.∀i:pitem S. •i^* = 〈(\fst(•i))^*,true〉. // qed. -definition reclose ≝ lift eclose. -interpretation "reclose" 'eclose x = (reclose ? x). - -lemma epsilon_or : ∀S:Alpha.∀b1,b2. epsilon S (b1 || b2) =1 ϵ b1 ∪ ϵ b2. -#S #b1 #b2 #w % cases b1 cases b2 normalize /2/ * /2/ * ; -qed. - -(* -lemma cupA : ∀S.∀a,b,c:word S → Prop.a ∪ b ∪ c = a ∪ (b ∪ c). -#S a b c; napply extP; #w; nnormalize; @; *; /3/; *; /3/; nqed. - -nlemma cupC : ∀S. ∀a,b:word S → Prop.a ∪ b = b ∪ a. -#S a b; napply extP; #w; @; *; nnormalize; /2/; nqed.*) - -(* theorem 16: 2 *) -(* -lemma oplus_cup : ∀S:Alpha.∀e1,e2:pre S. - \sem{e1 ⊕ e2} =1 \sem{e1} ∪ \sem{e2}. -#S * #i1 #b1 * #i2 #b2 #w % -[normalize * [* /3/ | cases b1 cases b2 normalize /3/ ] -|normalize * * /3/ cases b1 cases b2 normalize /3/ *] -qed. *) - lemma odot_true : ∀S.∀i1,i2:pitem S. - 〈i1,true〉 ⊙ i2 = i1 ▸ (•i2). + 〈i1,true〉 ▹ i2 = i1 ◃ (•i2). // qed. lemma odot_true_bis : ∀S.∀i1,i2:pitem S. - 〈i1,true〉 ⊙ i2 = 〈i1 · \fst (•i2), \snd (•i2)〉. + 〈i1,true〉 ▹ i2 = 〈i1 · \fst (•i2), \snd (•i2)〉. #S #i1 #i2 normalize cases (•i2) // qed. lemma odot_false: ∀S.∀i1,i2:pitem S. - 〈i1,false〉 ⊙ i2 = 〈i1 · i2, false〉. -// qed. - -lemma LcatE : ∀S.∀e1,e2:pitem S. - \sem{e1 · e2} = \sem{e1} · \sem{|e2|} ∪ \sem{e2}. -// qed. - -(* -nlemma cup_dotD : ∀S.∀p,q,r:word S → Prop.(p ∪ q) · r = (p · r) ∪ (q · r). -#S p q r; napply extP; #w; nnormalize; @; -##[ *; #x; *; #y; *; *; #defw; *; /7/ by or_introl, or_intror, ex_intro, conj; -##| *; *; #x; *; #y; *; *; /7/ by or_introl, or_intror, ex_intro, conj; ##] -nqed. - -nlemma cup0 :∀S.∀p:word S → Prop.p ∪ {} = p. -#S p; napply extP; #w; nnormalize; @; /2/; *; //; *; nqed.*) - -lemma erase_dot : ∀S.∀e1,e2:pitem S. |e1 · e2| = c ? (|e1|) (|e2|). -// qed. - -lemma erase_plus : ∀S.∀i1,i2:pitem S. - |i1 + i2| = |i1| + |i2|. -// qed. - -lemma erase_star : ∀S.∀i:pitem S.|i^*| = |i|^*. + 〈i1,false〉 ▹ i2 = 〈i1 · i2, false〉. // qed. -(* -definition substract := λS.λp,q:word S → Prop.λw.p w ∧ ¬ q w. -interpretation "substract" 'minus a b = (substract ? a b). - -nlemma cup_sub: ∀S.∀a,b:word S → Prop. ¬ (a []) → a ∪ (b - {[]}) = (a ∪ b) - {[]}. -#S a b c; napply extP; #w; nnormalize; @; *; /4/; *; /4/; nqed. - -nlemma sub0 : ∀S.∀a:word S → Prop. a - {} = a. -#S a; napply extP; #w; nnormalize; @; /3/; *; //; nqed. +(* The definition of •(-) (eclose) can then be lifted from items to pres +in the obvious way. *) -nlemma subK : ∀S.∀a:word S → Prop. a - a = {}. -#S a; napply extP; #w; nnormalize; @; *; /2/; nqed. +definition lift ≝ λS.λf:pitem S →pre S.λe:pre S. + match e with + [ mk_Prod i b ⇒ 〈\fst (f i), \snd (f i) ∨ b〉]. + +definition preclose ≝ λS. lift S (eclose S). +interpretation "preclose" 'eclose x = (preclose ? x). -nlemma subW : ∀S.∀a,b:word S → Prop.∀w.(a - b) w → a w. -#S a b w; nnormalize; *; //; nqed. *) +(* Obviously, broadcasting does not change the carrier of the item, +as it is easily proved by structural induction. *) lemma erase_bull : ∀S.∀i:pitem S. |\fst (•i)| = |i|. #S #i elim i // @@ -391,490 +468,252 @@ lemma erase_bull : ∀S.∀i:pitem S. |\fst (•i)| = |i|. ] qed. -axiom eq_ext_sym: ∀S.∀A,B:word S →Prop. - A =1 B → B =1 A. +(* We are now ready to state the main semantic properties of ⊕, ◃ and •(-): -axiom union_ext_l: ∀S.∀A,B,C:word S →Prop. - A =1 C → A ∪ B =1 C ∪ B. - -axiom union_ext_r: ∀S.∀A,B,C:word S →Prop. - B =1 C → A ∪ B =1 A ∪ C. - -axiom union_comm : ∀S.∀A,B:word S →Prop. - A ∪ B =1 B ∪ A. - -lemma distr_cat_r: ∀S.∀A,B,C:word S →Prop. - (A ∪ B) · C =1 A · C ∪ B · C. -#S #A #B #C #w % - [* #w1 * #w2 * * #eqw * /6/ |* * #w1 * #w2 * * /6/] +sem_oplus: \sem{e1 ⊕ e2} ≐ \sem{e1} ∪ \sem{e2} +sem_pcl: \sem{e1 ▹ i2} ≐ \sem{e1} · \sem{|i2|} ∪ \sem{i2} +sem_bullet \sem{•i} ≐ \sem{i} ∪ \sem{|i|} + +The proof of sem_oplus is straightforward. *) + +lemma sem_oplus: ∀S:DeqSet.∀e1,e2:pre S. + \sem{e1 ⊕ e2} ≐ \sem{e1} ∪ \sem{e2}. +#S * #i1 #b1 * #i2 #b2 #w % + [cases b1 cases b2 normalize /2/ * /3/ * /3/ + |cases b1 cases b2 normalize /2/ * /3/ * /3/ + ] qed. -(* this kind of results are pretty bad for automation; - better not index them *) -lemma epsilon_cat_r: ∀S.∀A:word S →Prop. - A · { [ ] } =1 A. -#S #A #w % - [* #w1 * #w2 * * #eqw #inw1 normalize #eqw2 odot_false >sem_pre_false >sem_pre_false >sem_cat /2/ + |#H >odot_true >sem_pre_true @(eqP_trans … (sem_pre_concat_r …)) + >erase_bull @eqP_trans [|@(eqP_union_l … H)] + @eqP_trans [|@eqP_union_l[|@union_comm ]] + @eqP_trans [|@eqP_sym @union_assoc ] /3/ ] -qed-. +qed. + +lemma minus_eps_pre_aux: ∀S.∀e:pre S.∀i:pitem S.∀A. + \sem{e} ≐ \sem{i} ∪ A → \sem{\fst e} ≐ \sem{i} ∪ (A - {[ ]}). +#S #e #i #A #seme +@eqP_trans [|@minus_eps_pre] +@eqP_trans [||@eqP_union_r [|@eqP_sym @minus_eps_item]] +@eqP_trans [||@distribute_substract] +@eqP_substract_r // +qed. -lemma epsilon_cat_l: ∀S.∀A:word S →Prop. - { [ ] } · A =1 A. -#S #A #w % - [* #w1 * #w2 * * #eqw normalize #eqw2 eclose_dot + (* lhs =\sem{•(i1) ▹ i2)} *) + @eqP_trans [|@odot_dot_aux //] + (* lhs = \sem{•(i1)·\sem{|i2|}∪\sem{i2} *) + @eqP_trans + [|@eqP_union_r + [|@eqP_trans [|@(cat_ext_l … IH1)] @distr_cat_r]] + (* lhs = \sem{i1}·\sem{|i2|}∪\sem{|i1|}·\sem{|i2|}∪\sem{i2} *) + @eqP_trans [|@union_assoc] + (* lhs = \sem{i1}·\sem{|i2|}∪(\sem{|i1|}·\sem{|i2|}∪\sem{i2}) *) + (* Now we work on the rhs that is + rhs = \sem{i1·i2} ∪ \sem{|i1·i2|} *) + >sem_cat + (* rhs = \sem{i1}·\sem{|i2|} ∪ \sem{i2} ∪ \sem{|i1·i2|} *) + @eqP_trans [||@eqP_sym @union_assoc] + (* rhs = \sem{i1}·\sem{|i2|}∪ (\sem{i2} ∪ \sem{|i1·i2|}) *) + @eqP_union_l @union_comm + |#i1 #i2 #IH1 #IH2 >eclose_plus + @eqP_trans [|@sem_oplus] >sem_plus >erase_plus + @eqP_trans [|@(eqP_union_l … IH2)] + @eqP_trans [|@eqP_sym @union_assoc] + @eqP_trans [||@union_assoc] @eqP_union_r + @eqP_trans [||@eqP_sym @union_assoc] + @eqP_trans [||@eqP_union_l [|@union_comm]] + @eqP_trans [||@union_assoc] /2/ + |#i #H >sem_pre_true >sem_star >erase_bull >sem_star + @eqP_trans [|@eqP_union_r [|@cat_ext_l [|@minus_eps_pre_aux //]]] + @eqP_trans [|@eqP_union_r [|@distr_cat_r]] + @eqP_trans [|@union_assoc] @eqP_union_l >erase_star + @eqP_sym @star_fix_eps ] -qed-. +qed. +(* +Blank item + +As a corollary of theorem sem_bullet, given a regular expression e, we can easily +find an item with the same semantics of $e$: it is enough to get an item (blank e) +having e as carrier and no point, and then broadcast a point in it. The semantics of +(blank e) is obviously the empty language: from the point of view of the automaton, +it corresponds with the pit state. *) -lemma distr_cat_r_eps: ∀S.∀A,C:word S →Prop. - (A ∪ { [ ] }) · C =1 A · C ∪ C. -#S #A #C @ext_eq_trans [|@distr_cat_r |@union_ext_r @epsilon_cat_l] +let rec blank (S: DeqSet) (i: re S) on i :pitem S ≝ + match i with + [ z ⇒ `∅ + | e ⇒ ϵ + | s y ⇒ `y + | o e1 e2 ⇒ (blank S e1) + (blank S e2) + | c e1 e2 ⇒ (blank S e1) · (blank S e2) + | k e ⇒ (blank S e)^* ]. + +lemma forget_blank: ∀S.∀e:re S.|blank S e| = e. +#S #e elim e normalize // qed. -(* axiom eplison_cut_l: ∀S.∀A:word S →Prop. - { [ ] } · A =1 A. +lemma sem_blank: ∀S.∀e:re S.\sem{blank S e} ≐ ∅. +#S #e elim e + [1,2:@eq_to_ex_eq // + |#s @eq_to_ex_eq // + |#e1 #e2 #Hind1 #Hind2 >sem_cat + @eqP_trans [||@(union_empty_r … ∅)] + @eqP_trans [|@eqP_union_l[|@Hind2]] @eqP_union_r + @eqP_trans [||@(cat_empty_l … ?)] @cat_ext_l @Hind1 + |#e1 #e2 #Hind1 #Hind2 >sem_plus + @eqP_trans [||@(union_empty_r … ∅)] + @eqP_trans [|@eqP_union_l[|@Hind2]] @eqP_union_r @Hind1 + |#e #Hind >sem_star + @eqP_trans [||@(cat_empty_l … ?)] @cat_ext_l @Hind + ] +qed. - axiom eplison_cut_r: ∀S.∀A:word S →Prop. - A · { [ ] } =1 A. *) +theorem re_embedding: ∀S.∀e:re S. + \sem{•(blank S e)} ≐ \sem{e}. +#S #e @eqP_trans [|@sem_bull] >forget_blank +@eqP_trans [|@eqP_union_r [|@sem_blank]] +@eqP_trans [|@union_comm] @union_empty_r. +qed. (* -lemma eta_lp : ∀S.∀p:pre S.𝐋\p p = 𝐋\p 〈\fst p, \snd p〉. -#S p; ncases p; //; nqed. +Lifted Operators + +Plus and bullet have been already lifted from items to pres. We can now +do a similar job for concatenation ⊙ and Kleene's star ⊛. *) -nlemma epsilon_dot: ∀S.∀p:word S → Prop. {[]} · p = p. -#S e; napply extP; #w; nnormalize; @; ##[##2: #Hw; @[]; @w; /3/; ##] -*; #w1; *; #w2; *; *; #defw defw1 Hw2; nrewrite < defw; nrewrite < defw1; -napply Hw2; nqed.*) +definition lifted_cat ≝ λS:DeqSet.λe:pre S. + lift S (pre_concat_l S eclose e). -(* theorem 16: 1 → 3 *) -lemma odot_dot_aux : ∀S.∀e1:pre S.∀i2:pitem S. - \sem{•i2} =1 \sem{i2} ∪ \sem{|i2|} → - \sem{e1 ⊙ i2} =1 \sem{e1} · \sem{|i2|} ∪ \sem{i2}. -#S * #i1 #b1 #i2 cases b1 - [2:#th >odot_false >sem_pre_false >sem_pre_false >sem_cat /2/ - |#H >odot_true >sem_pre_true @(ext_eq_trans … (sem_pre_concat_r …)) - >erase_bull - @ext_eq_trans - [|@(union_ext_r … H) - |@ext_eq_trans - [|@union_ext_r [|@union_comm ] - |@ext_eq_trans (* /3 by eq_ext_sym, union_ext_l/; *) - [|@eq_ext_sym @union_assoc - |/3/ - (* - by eq_ext_sym, union_ext_l; @union_ext_l /3 - /3/ ext_eq_trans /2/ - /3 width=5 by eq_ext_sym, union_ext_r/ *) - ] - ] - ] - ] +notation "e1 ⊙ e2" left associative with precedence 70 for @{'odot $e1 $e2}. + +interpretation "lifted cat" 'odot e1 e2 = (lifted_cat ? e1 e2). + +lemma odot_true_b : ∀S.∀i1,i2:pitem S.∀b. + 〈i1,true〉 ⊙ 〈i2,b〉 = 〈i1 · (\fst (•i2)),\snd (•i2) ∨ b〉. +#S #i1 #i2 #b normalize in ⊢ (??%?); cases (•i2) // +qed. + +lemma odot_false_b : ∀S.∀i1,i2:pitem S.∀b. + 〈i1,false〉 ⊙ 〈i2,b〉 = 〈i1 · i2 ,b〉. +// +qed. + +lemma erase_odot:∀S.∀e1,e2:pre S. + |\fst (e1 ⊙ e2)| = |\fst e1| · (|\fst e2|). +#S * #i1 * * #i2 #b2 // >odot_true_b // qed. -(* nlemma sub_dot_star : - ∀S.∀X:word S → Prop.∀b. (X - ϵ b) · X^* ∪ {[]} = X^*. -#S X b; napply extP; #w; @; -##[ *; ##[##2: nnormalize; #defw; nrewrite < defw; @[]; @; //] - *; #w1; *; #w2; *; *; #defw sube; *; #lw; *; #flx cj; - @ (w1 :: lw); nrewrite < defw; nrewrite < flx; @; //; - @; //; napply (subW … sube); -##| *; #wl; *; #defw Pwl; nrewrite < defw; nelim wl in Pwl; ##[ #_; @2; //] - #w' wl' IH; *; #Pw' IHp; nlapply (IH IHp); *; - ##[ *; #w1; *; #w2; *; *; #defwl' H1 H2; - @; ncases b in H1; #H1; - ##[##2: nrewrite > (sub0…); @w'; @(w1@w2); - nrewrite > (associative_append ? w' w1 w2); - nrewrite > defwl'; @; ##[@;//] @(wl'); @; //; - ##| ncases w' in Pw'; - ##[ #ne; @w1; @w2; nrewrite > defwl'; @; //; @; //; - ##| #x xs Px; @(x::xs); @(w1@w2); - nrewrite > (defwl'); @; ##[@; //; @; //; @; nnormalize; #; ndestruct] - @wl'; @; //; ##] ##] - ##| #wlnil; nchange in match (flatten ? (w'::wl')) with (w' @ flatten ? wl'); - nrewrite < (wlnil); nrewrite > (append_nil…); ncases b; - ##[ ncases w' in Pw'; /2/; #x xs Pxs; @; @(x::xs); @([]); - nrewrite > (append_nil…); @; ##[ @; //;@; //; nnormalize; @; #; ndestruct] - @[]; @; //; - ##| @; @w'; @[]; nrewrite > (append_nil…); @; ##[##2: @[]; @; //] - @; //; @; //; @; *;##]##]##] -nqed. *) - -(* theorem 16: 1 *) -alias symbol "pc" (instance 13) = "cat lang". -alias symbol "in_pl" (instance 23) = "in_pl". -alias symbol "in_pl" (instance 5) = "in_pl". -alias symbol "eclose" (instance 21) = "eclose". -ntheorem bull_cup : ∀S:Alpha. ∀e:pitem S. 𝐋\p (•e) = 𝐋\p e ∪ 𝐋 |e|. -#S e; nelim e; //; - ##[ #a; napply extP; #w; nnormalize; @; *; /3/ by or_introl, or_intror; - ##| #a; napply extP; #w; nnormalize; @; *; /3/ by or_introl; *; - ##| #e1 e2 IH1 IH2; - nchange in ⊢ (??(??(%))?) with (•e1 ⊙ 〈e2,false〉); - nrewrite > (odot_dot_aux S (•e1) 〈e2,false〉 IH2); - nrewrite > (IH1 …); nrewrite > (cup_dotD …); - nrewrite > (cupA …); nrewrite > (cupC ?? (𝐋\p ?) …); - nchange in match (𝐋\p 〈?,?〉) with (𝐋\p e2 ∪ {}); nrewrite > (cup0 …); - nrewrite < (erase_dot …); nrewrite < (cupA …); //; - ##| #e1 e2 IH1 IH2; - nchange in match (•(?+?)) with (•e1 ⊕ •e2); nrewrite > (oplus_cup …); - nrewrite > (IH1 …); nrewrite > (IH2 …); nrewrite > (cupA …); - nrewrite > (cupC ? (𝐋\p e2)…);nrewrite < (cupA ??? (𝐋\p e2)…); - nrewrite > (cupC ?? (𝐋\p e2)…); nrewrite < (cupA …); - nrewrite < (erase_plus …); //. - ##| #e; nletin e' ≝ (\fst (•e)); nletin b' ≝ (\snd (•e)); #IH; - nchange in match (𝐋\p ?) with (𝐋\p 〈e'^*,true〉); - nchange in match (𝐋\p ?) with (𝐋\p (e'^* ) ∪ {[ ]}); - nchange in ⊢ (??(??%?)?) with (𝐋\p e' · 𝐋 |e'|^* ); - nrewrite > (erase_bull…e); - nrewrite > (erase_star …); - nrewrite > (?: 𝐋\p e' = 𝐋\p e ∪ (𝐋 |e| - ϵ b')); ##[##2: - nchange in IH : (??%?) with (𝐋\p e' ∪ ϵ b'); ncases b' in IH; - ##[ #IH; nrewrite > (cup_sub…); //; nrewrite < IH; - nrewrite < (cup_sub…); //; nrewrite > (subK…); nrewrite > (cup0…);//; - ##| nrewrite > (sub0 …); #IH; nrewrite < IH; nrewrite > (cup0 …);//; ##]##] - nrewrite > (cup_dotD…); nrewrite > (cupA…); - nrewrite > (?: ((?·?)∪{[]} = 𝐋 |e^*|)); //; - nchange in match (𝐋 |e^*|) with ((𝐋 |e|)^* ); napply sub_dot_star;##] - nqed. - -(* theorem 16: 3 *) -nlemma odot_dot: - ∀S.∀e1,e2: pre S. 𝐋\p (e1 ⊙ e2) = 𝐋\p e1 · 𝐋 |\fst e2| ∪ 𝐋\p e2. -#S e1 e2; napply odot_dot_aux; napply (bull_cup S (\fst e2)); nqed. - -nlemma dot_star_epsilon : ∀S.∀e:re S.𝐋 e · 𝐋 e^* ∪ {[]} = 𝐋 e^*. -#S e; napply extP; #w; nnormalize; @; -##[ *; ##[##2: #H; nrewrite < H; @[]; /3/] *; #w1; *; #w2; - *; *; #defw Hw1; *; #wl; *; #defw2 Hwl; @(w1 :: wl); - nrewrite < defw; nrewrite < defw2; @; //; @;//; -##| *; #wl; *; #defw Hwl; ncases wl in defw Hwl; ##[#defw; #; @2; nrewrite < defw; //] - #x xs defw; *; #Hx Hxs; @; @x; @(flatten ? xs); nrewrite < defw; - @; /2/; @xs; /2/;##] - nqed. - -nlemma nil_star : ∀S.∀e:re S. [ ] ∈ e^*. -#S e; @[]; /2/; nqed. - -nlemma cupID : ∀S.∀l:word S → Prop.l ∪ l = l. -#S l; napply extP; #w; @; ##[*]//; #; @; //; nqed. - -nlemma cup_star_nil : ∀S.∀l:word S → Prop. l^* ∪ {[]} = l^*. -#S a; napply extP; #w; @; ##[*; //; #H; nrewrite < H; @[]; @; //] #;@; //;nqed. - -nlemma rcanc_sing : ∀S.∀A,C:word S → Prop.∀b:word S . - ¬ (A b) → A ∪ { (b) } = C → A = C - { (b) }. -#S A C b nbA defC; nrewrite < defC; napply extP; #w; @; -##[ #Aw; /3/| *; *; //; #H nH; ncases nH; #abs; nlapply (abs H); *] -nqed. - -(* theorem 16: 4 *) -nlemma star_dot: ∀S.∀e:pre S. 𝐋\p (e^⊛) = 𝐋\p e · (𝐋 |\fst e|)^*. -#S p; ncases p; #e b; ncases b; -##[ nchange in match (〈e,true〉^⊛) with 〈?,?〉; - nletin e' ≝ (\fst (•e)); nletin b' ≝ (\snd (•e)); - nchange in ⊢ (??%?) with (?∪?); - nchange in ⊢ (??(??%?)?) with (𝐋\p e' · 𝐋 |e'|^* ); - nrewrite > (?: 𝐋\p e' = 𝐋\p e ∪ (𝐋 |e| - ϵ b' )); ##[##2: - nlapply (bull_cup ? e); #bc; - nchange in match (𝐋\p (•e)) in bc with (?∪?); - nchange in match b' in bc with b'; - ncases b' in bc; ##[##2: nrewrite > (cup0…); nrewrite > (sub0…); //] - nrewrite > (cup_sub…); ##[napply rcanc_sing] //;##] - nrewrite > (cup_dotD…); nrewrite > (cupA…);nrewrite > (erase_bull…); - nrewrite > (sub_dot_star…); - nchange in match (𝐋\p 〈?,?〉) with (?∪?); - nrewrite > (cup_dotD…); nrewrite > (epsilon_dot…); //; -##| nwhd in match (〈e,false〉^⊛); nchange in match (𝐋\p 〈?,?〉) with (?∪?); - nrewrite > (cup0…); - nchange in ⊢ (??%?) with (𝐋\p e · 𝐋 |e|^* ); - nrewrite < (cup0 ? (𝐋\p e)); //;##] -nqed. - -nlet rec pre_of_re (S : Alpha) (e : re S) on e : pitem S ≝ +(* Let us come to the star operation: *) + +definition lk ≝ λS:DeqSet.λe:pre S. match e with - [ z ⇒ pz ? - | e ⇒ pe ? - | s x ⇒ ps ? x - | c e1 e2 ⇒ pc ? (pre_of_re ? e1) (pre_of_re ? e2) - | o e1 e2 ⇒ po ? (pre_of_re ? e1) (pre_of_re ? e2) - | k e1 ⇒ pk ? (pre_of_re ? e1)]. - -nlemma notFalse : ¬False. @; //; nqed. - -nlemma dot0 : ∀S.∀A:word S → Prop. {} · A = {}. -#S A; nnormalize; napply extP; #w; @; ##[##2: *] -*; #w1; *; #w2; *; *; //; nqed. - -nlemma Lp_pre_of_re : ∀S.∀e:re S. 𝐋\p (pre_of_re ? e) = {}. -#S e; nelim e; ##[##1,2,3: //] -##[ #e1 e2 H1 H2; nchange in match (𝐋\p (pre_of_re S (e1 e2))) with (?∪?); - nrewrite > H1; nrewrite > H2; nrewrite > (dot0…); nrewrite > (cupID…);// -##| #e1 e2 H1 H2; nchange in match (𝐋\p (pre_of_re S (e1+e2))) with (?∪?); - nrewrite > H1; nrewrite > H2; nrewrite > (cupID…); // -##| #e1 H1; nchange in match (𝐋\p (pre_of_re S (e1^* ))) with (𝐋\p (pre_of_re ??) · ?); - nrewrite > H1; napply dot0; ##] -nqed. - -nlemma erase_pre_of_reK : ∀S.∀e. 𝐋 |pre_of_re S e| = 𝐋 e. -#S A; nelim A; //; -##[ #e1 e2 H1 H2; nchange in match (𝐋 (e1 · e2)) with (𝐋 e1·?); - nrewrite < H1; nrewrite < H2; // -##| #e1 e2 H1 H2; nchange in match (𝐋 (e1 + e2)) with (𝐋 e1 ∪ ?); - nrewrite < H1; nrewrite < H2; // -##| #e1 H1; nchange in match (𝐋 (e1^* )) with ((𝐋 e1)^* ); - nrewrite < H1; //] -nqed. - -(* corollary 17 *) -nlemma L_Lp_bull : ∀S.∀e:re S.𝐋 e = 𝐋\p (•pre_of_re ? e). -#S e; nrewrite > (bull_cup…); nrewrite > (Lp_pre_of_re…); -nrewrite > (cupC…); nrewrite > (cup0…); nrewrite > (erase_pre_of_reK…); //; -nqed. - -nlemma Pext : ∀S.∀f,g:word S → Prop. f = g → ∀w.f w → g w. -#S f g H; nrewrite > H; //; nqed. - -(* corollary 18 *) -ntheorem bull_true_epsilon : ∀S.∀e:pitem S. \snd (•e) = true ↔ [ ] ∈ |e|. -#S e; @; -##[ #defsnde; nlapply (bull_cup ? e); nchange in match (𝐋\p (•e)) with (?∪?); - nrewrite > defsnde; #H; - nlapply (Pext ??? H [ ] ?); ##[ @2; //] *; //; - -STOP - -notation > "\move term 90 x term 90 E" -non associative with precedence 60 for @{move ? $x $E}. -nlet rec move (S: Alpha) (x:S) (E: pitem S) on E : pre S ≝ - match E with - [ pz ⇒ 〈 ∅, false 〉 - | pe ⇒ 〈 ϵ, false 〉 - | ps y ⇒ 〈 `y, false 〉 - | pp y ⇒ 〈 `y, x == y 〉 - | po e1 e2 ⇒ \move x e1 ⊕ \move x e2 - | pc e1 e2 ⇒ \move x e1 ⊙ \move x e2 - | pk e ⇒ (\move x e)^⊛ ]. -notation < "\move\shy x\shy E" non associative with precedence 60 for @{'move $x $E}. -notation > "\move term 90 x term 90 E" non associative with precedence 60 for @{'move $x $E}. -interpretation "move" 'move x E = (move ? x E). - -ndefinition rmove ≝ λS:Alpha.λx:S.λe:pre S. \move x (\fst e). -interpretation "rmove" 'move x E = (rmove ? x E). - -nlemma XXz : ∀S:Alpha.∀w:word S. w ∈ ∅ → False. -#S w abs; ninversion abs; #; ndestruct; -nqed. - - -nlemma XXe : ∀S:Alpha.∀w:word S. w .∈ ϵ → False. -#S w abs; ninversion abs; #; ndestruct; -nqed. - -nlemma XXze : ∀S:Alpha.∀w:word S. w .∈ (∅ · ϵ) → False. -#S w abs; ninversion abs; #; ndestruct; /2/ by XXz,XXe; -nqed. - - -naxiom in_move_cat: - ∀S.∀w:word S.∀x.∀E1,E2:pitem S. w .∈ \move x (E1 · E2) → - (∃w1.∃w2. w = w1@w2 ∧ w1 .∈ \move x E1 ∧ w2 ∈ .|E2|) ∨ w .∈ \move x E2. -#S w x e1 e2 H; nchange in H with (w .∈ \move x e1 ⊙ \move x e2); -ncases e1 in H; ncases e2; -##[##1: *; ##[*; nnormalize; #; ndestruct] - #H; ninversion H; ##[##1,4,5,6: nnormalize; #; ndestruct] - nnormalize; #; ndestruct; ncases (?:False); /2/ by XXz,XXze; -##|##2: *; ##[*; nnormalize; #; ndestruct] - #H; ninversion H; ##[##1,4,5,6: nnormalize; #; ndestruct] - nnormalize; #; ndestruct; ncases (?:False); /2/ by XXz,XXze; -##| #r; *; ##[ *; nnormalize; #; ndestruct] - #H; ninversion H; ##[##1,4,5,6: nnormalize; #; ndestruct] - ##[##2: nnormalize; #; ndestruct; @2; @2; //.##] - nnormalize; #; ndestruct; ncases (?:False); /2/ by XXz; -##| #y; *; ##[ *; nnormalize; #defw defx; ndestruct; @2; @1; /2/ by conj;##] - #H; ninversion H; nnormalize; #; ndestruct; - ##[ncases (?:False); /2/ by XXz] /3/ by or_intror; -##| #r1 r2; *; ##[ *; #defw] - ... -nqed. - -ntheorem move_ok: - ∀S:Alpha.∀E:pre S.∀a,w.w .∈ \move a E ↔ (a :: w) .∈ E. -#S E; ncases E; #r b; nelim r; -##[##1,2: #a w; @; - ##[##1,3: nnormalize; *; ##[##1,3: *; #; ndestruct; ##| #abs; ncases (XXz … abs); ##] - #H; ninversion H; #; ndestruct; - ##|##*:nnormalize; *; ##[##1,3: *; #; ndestruct; ##| #H1; ncases (XXz … H1); ##] - #H; ninversion H; #; ndestruct;##] -##|#a c w; @; nnormalize; ##[*; ##[*; #; ndestruct; ##] #abs; ninversion abs; #; ndestruct;##] - *; ##[##2: #abs; ninversion abs; #; ndestruct; ##] *; #; ndestruct; -##|#a c w; @; nnormalize; - ##[ *; ##[ *; #defw; nrewrite > defw; #ca; @2; nrewrite > (eqb_t … ca); @; ##] - #H; ninversion H; #; ndestruct; - ##| *; ##[ *; #; ndestruct; ##] #H; ninversion H; ##[##2,3,4,5,6: #; ndestruct] - #d defw defa; ndestruct; @1; @; //; nrewrite > (eqb_true S d d); //. ##] -##|#r1 r2 H1 H2 a w; @; - ##[ #H; ncases (in_move_cat … H); - ##[ *; #w1; *; #w2; *; *; #defw w1m w2m; - ncases (H1 a w1); #H1w1; #_; nlapply (H1w1 w1m); #good; - nrewrite > defw; @2; @2 (a::w1); //; ncases good; ##[ *; #; ndestruct] //. - ##| - ... -##| -##| -##] -nqed. - - -notation > "x ↦* E" non associative with precedence 60 for @{move_star ? $x $E}. -nlet rec move_star (S : decidable) w E on w : bool × (pre S) ≝ - match w with - [ nil ⇒ E - | cons x w' ⇒ w' ↦* (x ↦ \snd E)]. - -ndefinition in_moves ≝ λS:decidable.λw.λE:bool × (pre S). \fst(w ↦* E). - -ncoinductive equiv (S:decidable) : bool × (pre S) → bool × (pre S) → Prop ≝ - mk_equiv: - ∀E1,E2: bool × (pre S). - \fst E1 = \fst E2 → - (∀x. equiv S (x ↦ \snd E1) (x ↦ \snd E2)) → - equiv S E1 E2. - -ndefinition NAT: decidable. - @ nat eqb; /2/. -nqed. - -include "hints_declaration.ma". - -alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". -unification hint 0 ≔ ; X ≟ NAT ⊢ carr X ≡ nat. - -ninductive unit: Type[0] ≝ I: unit. - -nlet corec foo_nop (b: bool): - equiv ? - 〈 b, pc ? (ps ? 0) (pk ? (pc ? (ps ? 1) (ps ? 0))) 〉 - 〈 b, pc ? (pk ? (pc ? (ps ? 0) (ps ? 1))) (ps ? 0) 〉 ≝ ?. - @; //; #x; ncases x - [ nnormalize in ⊢ (??%%); napply (foo_nop false) - | #y; ncases y - [ nnormalize in ⊢ (??%%); napply (foo_nop false) - | #w; nnormalize in ⊢ (??%%); napply (foo_nop false) ]##] -nqed. + [ mk_Prod i1 b1 ⇒ + match b1 with + [true ⇒ 〈(\fst (eclose ? i1))^*, true〉 + |false ⇒ 〈i1^*,false〉 + ] + ]. -(* -nlet corec foo (a: unit): - equiv NAT - (eclose NAT (pc ? (ps ? 0) (pk ? (pc ? (ps ? 1) (ps ? 0))))) - (eclose NAT (pc ? (pk ? (pc ? (ps ? 0) (ps ? 1))) (ps ? 0))) -≝ ?. - @; - ##[ nnormalize; // - ##| #x; ncases x - [ nnormalize in ⊢ (??%%); - nnormalize in foo: (? → ??%%); - @; //; #y; ncases y - [ nnormalize in ⊢ (??%%); napply foo_nop - | #y; ncases y - [ nnormalize in ⊢ (??%%); - - ##| #z; nnormalize in ⊢ (??%%); napply foo_nop ]##] - ##| #y; nnormalize in ⊢ (??%%); napply foo_nop - ##] -nqed. -*) +(* notation < "a \sup ⊛" non associative with precedence 90 for @{'lk $a}.*) +interpretation "lk" 'lk a = (lk ? a). +notation "a^⊛" non associative with precedence 90 for @{'lk $a}. -ndefinition test1 : pre ? ≝ ❨ `0 | `1 ❩^* `0. -ndefinition test2 : pre ? ≝ ❨ (`0`1)^* `0 | (`0`1)^* `1 ❩. -ndefinition test3 : pre ? ≝ (`0 (`0`1)^* `1)^*. - - -nlemma foo: in_moves ? [0;0;1;0;1;1] (ɛ test3) = true. - nnormalize in match test3; - nnormalize; -//; -nqed. - -(**********************************************************) - -ninductive der (S: Type[0]) (a: S) : re S → re S → CProp[0] ≝ - der_z: der S a (z S) (z S) - | der_e: der S a (e S) (z S) - | der_s1: der S a (s S a) (e ?) - | der_s2: ∀b. a ≠ b → der S a (s S b) (z S) - | der_c1: ∀e1,e2,e1',e2'. in_l S [] e1 → der S a e1 e1' → der S a e2 e2' → - der S a (c ? e1 e2) (o ? (c ? e1' e2) e2') - | der_c2: ∀e1,e2,e1'. Not (in_l S [] e1) → der S a e1 e1' → - der S a (c ? e1 e2) (c ? e1' e2) - | der_o: ∀e1,e2,e1',e2'. der S a e1 e1' → der S a e2 e2' → - der S a (o ? e1 e2) (o ? e1' e2'). - -nlemma eq_rect_CProp0_r: - ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → CProp[0]. P a (refl A a) → P x p. - #A; #a; #x; #p; ncases p; #P; #H; nassumption. -nqed. - -nlemma append1: ∀A.∀a:A.∀l. [a] @ l = a::l. //. nqed. - -naxiom in_l1: ∀S,r1,r2,w. in_l S [ ] r1 → in_l S w r2 → in_l S w (c S r1 r2). -(* #S; #r1; #r2; #w; nelim r1 - [ #K; ninversion K - | #H1; #H2; napply (in_c ? []); // - | (* tutti casi assurdi *) *) - -ninductive in_l' (S: Type[0]) : word S → re S → CProp[0] ≝ - in_l_empty1: ∀E.in_l S [] E → in_l' S [] E - | in_l_cons: ∀a,w,e,e'. in_l' S w e' → der S a e e' → in_l' S (a::w) e. - -ncoinductive eq_re (S: Type[0]) : re S → re S → CProp[0] ≝ - mk_eq_re: ∀E1,E2. - (in_l S [] E1 → in_l S [] E2) → - (in_l S [] E2 → in_l S [] E1) → - (∀a,E1',E2'. der S a E1 E1' → der S a E2 E2' → eq_re S E1' E2') → - eq_re S E1 E2. - -(* serve il lemma dopo? *) -ntheorem eq_re_is_eq: ∀S.∀E1,E2. eq_re S E1 E2 → ∀w. in_l ? w E1 → in_l ? w E2. - #S; #E1; #E2; #H1; #w; #H2; nelim H2 in E2 H1 ⊢ % - [ #r; #K (* ok *) - | #a; #w; #R1; #R2; #K1; #K2; #K3; #R3; #K4; @2 R2; //; ncases K4; - -(* IL VICEVERSA NON VALE *) -naxiom in_l_to_in_l: ∀S,w,E. in_l' S w E → in_l S w E. -(* #S; #w; #E; #H; nelim H - [ // - | #a; #w'; #r; #r'; #H1; (* e si cade qua sotto! *) + +lemma ostar_true: ∀S.∀i:pitem S. + 〈i,true〉^⊛ = 〈(\fst (•i))^*, true〉. +// qed. + +lemma ostar_false: ∀S.∀i:pitem S. + 〈i,false〉^⊛ = 〈i^*, false〉. +// qed. + +lemma erase_ostar: ∀S.∀e:pre S. + |\fst (e^⊛)| = |\fst e|^*. +#S * #i * // qed. + +lemma sem_odot_true: ∀S:DeqSet.∀e1:pre S.∀i. + \sem{e1 ⊙ 〈i,true〉} ≐ \sem{e1 ▹ i} ∪ { [ ] }. +#S #e1 #i +cut (e1 ⊙ 〈i,true〉 = 〈\fst (e1 ▹ i), \snd(e1 ▹ i) ∨ true〉) [//] +#H >H cases (e1 ▹ i) #i1 #b1 cases b1 + [>sem_pre_true @eqP_trans [||@eqP_sym @union_assoc] + @eqP_union_l /2/ + |/2/ ] -nqed. *) - -ntheorem der1: ∀S,a,e,e',w. der S a e e' → in_l S w e' → in_l S (a::w) e. - #S; #a; #E; #E'; #w; #H; nelim H - [##1,2: #H1; ninversion H1 - [##1,8: #_; #K; (* non va ndestruct K; *) ncases (?:False); (* perche' due goal?*) /2/ - |##2,9: #X; #Y; #K; ncases (?:False); /2/ - |##3,10: #x; #y; #z; #w; #a; #b; #c; #d; #e; #K; ncases (?:False); /2/ - |##4,11: #x; #y; #z; #w; #a; #b; #K; ncases (?:False); /2/ - |##5,12: #x; #y; #z; #w; #a; #b; #K; ncases (?:False); /2/ - |##6,13: #x; #y; #K; ncases (?:False); /2/ - |##7,14: #x; #y; #z; #w; #a; #b; #c; #d; #K; ncases (?:False); /2/] -##| #H1; ninversion H1 - [ // - | #X; #Y; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #c; #d; #e; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #K; ncases (?:False); /2/ - | #x; #y; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #c; #d; #K; ncases (?:False); /2/ ] -##| #H1; #H2; #H3; ninversion H3 - [ #_; #K; ncases (?:False); /2/ - | #X; #Y; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #c; #d; #e; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #K; ncases (?:False); /2/ - | #x; #y; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #c; #d; #K; ncases (?:False); /2/ ] -##| #r1; #r2; #r1'; #r2'; #H1; #H2; #H3; #H4; #H5; #H6; - -lemma \ No newline at end of file +qed. + +lemma eq_odot_false: ∀S:DeqSet.∀e1:pre S.∀i. + e1 ⊙ 〈i,false〉 = e1 ▹ i. +#S #e1 #i +cut (e1 ⊙ 〈i,false〉 = 〈\fst (e1 ▹ i), \snd(e1 ▹ i) ∨ false〉) [//] +cases (e1 ▹ i) #i1 #b1 cases b1 #H @H +qed. + +(* We conclude this section with the proof of the main semantic properties +of ⊙ and ⊛. *) + +lemma sem_odot: + ∀S.∀e1,e2: pre S. \sem{e1 ⊙ e2} ≐ \sem{e1}· \sem{|\fst e2|} ∪ \sem{e2}. +#S #e1 * #i2 * + [>sem_pre_true + @eqP_trans [|@sem_odot_true] + @eqP_trans [||@union_assoc] @eqP_union_r @odot_dot_aux // + |>sem_pre_false >eq_odot_false @odot_dot_aux // + ] +qed. + +theorem sem_ostar: ∀S.∀e:pre S. + \sem{e^⊛} ≐ \sem{e} · \sem{|\fst e|}^*. +#S * #i #b cases b + [(* lhs = \sem{〈i,true〉^⊛} *) + >sem_pre_true (* >sem_pre_true *) + (* lhs = \sem{(\fst (•i))^*}∪{ϵ} *) + >sem_star >erase_bull + (* lhs = \sem{\fst (•i)}·(\sem{|i|)^*∪{ϵ} *) + @eqP_trans [|@eqP_union_r[|@cat_ext_l [|@minus_eps_pre_aux //]]] + (* lhs = (\sem{i}∪(\sem{|i|}-{ϵ})·(\sem{|i|)^*∪{ϵ} *) + @eqP_trans [|@eqP_union_r [|@distr_cat_r]] + (* lhs = (\sem{i}·(\sem{|i|)^*∪(\sem{|i|}-{ϵ})·(\sem{|i|)^*∪{ϵ} *) + @eqP_trans [|@union_assoc] + (* lhs = (\sem{i}·(\sem{|i|)^*∪((\sem{|i|}-{ϵ})·(\sem{|i|)^*∪{ϵ}) *) + @eqP_trans [|@eqP_union_l[|@eqP_sym @star_fix_eps]] + (* lhs = (\sem{i}·(\sem{|i|)^*∪(\sem{|i|)^* *) + (* now we work on the right hand side, that is + rhs = \sem{〈i,true〉}·(\sem{|i|}^* *) + @eqP_trans [||@eqP_sym @distr_cat_r] + (* rhs = (\sem{i}·(\sem{|i|)^*∪{ϵ}·(\sem{|i|)^* *) + @eqP_union_l @eqP_sym @epsilon_cat_l + |>sem_pre_false >sem_pre_false >sem_star /2/ + ] +qed. +