X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fre%2Fre.ma;h=8ba714b82592f01047735b685663a64ed200f3d5;hb=7c9d99dfb049d726491b71f07ba6a9b088b30166;hp=388c27e708f065adc1e09cc80a251843b86a5365;hpb=d5d5925101dd773efb2f90136adc5d714a530cb9;p=helm.git diff --git a/matita/matita/lib/re/re.ma b/matita/matita/lib/re/re.ma index 388c27e70..8ba714b82 100644 --- a/matita/matita/lib/re/re.ma +++ b/matita/matita/lib/re/re.ma @@ -12,81 +12,40 @@ (* *) (**************************************************************************) -include "arithmetics/nat.ma". -include "basics/list.ma". +include "re/lang.ma". +include "basics/core_notation/card_1.ma". -interpretation "iff" 'iff a b = (iff a b). +(* The type re of regular expressions over an alphabet $S$ is the smallest +collection of objects generated by the following constructors: *) -record Alpha : Type[1] ≝ { carr :> Type[0]; - eqb: carr → carr → bool; - eqb_true: ∀x,y. (eqb x y = true) ↔ (x = y) -}. - -notation "a == b" non associative with precedence 45 for @{ 'eqb $a $b }. -interpretation "eqb" 'eqb a b = (eqb ? a b). - -definition word ≝ λS:Alpha.list S. - -inductive re (S: Alpha) : Type[0] ≝ +inductive re (S: DeqSet) : Type[0] ≝ z: re S | e: re S | s: S → re S | c: re S → re S → re S | o: re S → re S → re S | k: re S → re S. - -(* notation < "a \sup ⋇" non associative with precedence 90 for @{ 'pk $a}.*) -notation "a ^ *" non associative with precedence 90 for @{ 'pk $a}. -interpretation "star" 'pk a = (k ? a). -interpretation "or" 'plus a b = (o ? a b). - -notation "a · b" non associative with precedence 60 for @{ 'pc $a $b}. -interpretation "cat" 'pc a b = (c ? a b). - -(* to get rid of \middot -ncoercion c : ∀S:Alpha.∀p:re S. re S → re S ≝ c on _p : re ? to ∀_:?.?. -*) + +interpretation "re epsilon" 'epsilon = (e ?). +interpretation "re or" 'plus a b = (o ? a b). +interpretation "re cat" 'middot a b = (c ? a b). +interpretation "re star" 'star a = (k ? a). notation < "a" non associative with precedence 90 for @{ 'ps $a}. notation > "` term 90 a" non associative with precedence 90 for @{ 'ps $a}. interpretation "atom" 'ps a = (s ? a). -notation "ϵ" non associative with precedence 90 for @{ 'epsilon }. -interpretation "epsilon" 'epsilon = (e ?). - -notation "∅" non associative with precedence 90 for @{ 'empty }. +notation "`∅" non associative with precedence 90 for @{ 'empty }. interpretation "empty" 'empty = (z ?). -let rec flatten (S : Alpha) (l : list (word S)) on l : word S ≝ -match l with [ nil ⇒ [ ] | cons w tl ⇒ w @ flatten ? tl ]. - -let rec conjunct (S : Alpha) (l : list (word S)) (r : word S → Prop) on l: Prop ≝ -match l with [ nil ⇒ ? | cons w tl ⇒ r w ∧ conjunct ? tl r ]. -// qed. - -definition empty_lang ≝ λS.λw:word S.False. -notation "{}" non associative with precedence 90 for @{'empty_lang}. -interpretation "empty lang" 'empty_lang = (empty_lang ?). - -definition sing_lang ≝ λS.λx,w:word S.x=w. -(* notation "{x}" non associative with precedence 90 for @{'sing_lang $x}.*) -interpretation "sing lang" 'singl x = (sing_lang ? x). - -definition union : ∀S,l1,l2,w.Prop ≝ λS.λl1,l2.λw:word S.l1 w ∨ l2 w. -interpretation "union lang" 'union a b = (union ? a b). - -definition cat : ∀S,l1,l2,w.Prop ≝ - λS.λl1,l2.λw:word S.∃w1,w2.w1 @ w2 = w ∧ l1 w1 ∧ l2 w2. -interpretation "cat lang" 'pc a b = (cat ? a b). +(* The language sem{e} associated with the regular expression e is inductively +defined by the following function: *) -definition star ≝ λS.λl.λw:word S.∃lw.flatten ? lw = w ∧ conjunct ? lw l. -interpretation "star lang" 'pk l = (star ? l). - -let rec in_l (S : Alpha) (r : re S) on r : word S → Prop ≝ +let rec in_l (S : DeqSet) (r : re S) on r : word S → Prop ≝ match r with -[ z ⇒ {} -| e ⇒ { [ ] } -| s x ⇒ { [x] } +[ z ⇒ ∅ +| e ⇒ {ϵ} +| s x ⇒ {[x]} | c r1 r2 ⇒ (in_l ? r1) · (in_l ? r2) | o r1 r2 ⇒ (in_l ? r1) ∪ (in_l ? r2) | k r1 ⇒ (in_l ? r1) ^*]. @@ -98,15 +57,38 @@ interpretation "in_l mem" 'mem w l = (in_l ? l w). lemma rsem_star : ∀S.∀r: re S. \sem{r^*} = \sem{r}^*. // qed. -notation "a || b" left associative with precedence 30 for @{'orb $a $b}. -interpretation "orb" 'orb a b = (orb a b). - -definition if_then_else ≝ λT:Type[0].λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f]. -notation > "'if' term 19 e 'then' term 19 t 'else' term 19 f" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. -notation < "'if' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. -interpretation "if_then_else" 'if_then_else e t f = (if_then_else ? e t f). - -inductive pitem (S: Alpha) : Type[0] ≝ +(* +Pointed Regular expressions + +We now introduce pointed regular expressions, that are the main tool we shall +use for the construction of the automaton. +A pointed regular expression is just a regular expression internally labelled +with some additional points. Intuitively, points mark the positions inside the +regular expression which have been reached after reading some prefix of +the input string, or better the positions where the processing of the remaining +string has to be started. Each pointed expression for $e$ represents a state of +the {\em deterministic} automaton associated with $e$; since we obviously have +only a finite number of possible labellings, the number of states of the automaton +is finite. + +Pointed regular expressions provide the tool for an algebraic revisitation of +McNaughton and Yamada's algorithm for position automata, making the proof of its +correctness, that is far from trivial, particularly clear and simple. In particular, +pointed expressions offer an appealing alternative to Brzozowski's derivatives, +avoiding their weakest point, namely the fact of being forced to quotient derivatives +w.r.t. a suitable notion of equivalence in order to get a finite number of states +(that is not essential for recognizing strings, but is crucial for comparing regular +expressions). + +Our main data structure is the notion of pointed item, that is meant whose purpose +is to encode a set of positions inside a regular expression. +The idea of formalizing pointers inside a data type by means of a labelled version +of the data type itself is probably one of the first, major lessons learned in the +formalization of the metatheory of programming languages. For our purposes, it is +enough to mark positions preceding individual characters, so we shall have two kinds +of characters •a (pp a) and a (ps a) according to the case a is pointed or not. *) + +inductive pitem (S: DeqSet) : Type[0] ≝ pz: pitem S | pe: pitem S | ps: S → pitem S @@ -115,41 +97,132 @@ inductive pitem (S: Alpha) : Type[0] ≝ | po: pitem S → pitem S → pitem S | pk: pitem S → pitem S. +(* A pointed regular expression (pre) is just a pointed item with an additional +boolean, that must be understood as the possibility to have a trailing point at +the end of the expression. As we shall see, pointed regular expressions can be +understood as states of a DFA, and the boolean indicates if +the state is final or not. *) + definition pre ≝ λS.pitem S × bool. -interpretation "pstar" 'pk a = (pk ? a). -interpretation "por" 'plus a b = (po ? a b). -interpretation "pcat" 'pc a b = (pc ? a b). +interpretation "pitem star" 'star a = (pk ? a). +interpretation "pitem or" 'plus a b = (po ? a b). +interpretation "pitem cat" 'middot a b = (pc ? a b). notation < ".a" non associative with precedence 90 for @{ 'pp $a}. notation > "`. term 90 a" non associative with precedence 90 for @{ 'pp $a}. -interpretation "ppatom" 'pp a = (pp ? a). - -(* to get rid of \middot -ncoercion pc : ∀S.∀p:pitem S. pitem S → pitem S ≝ pc on _p : pitem ? to ∀_:?.?. -*) +interpretation "pitem pp" 'pp a = (pp ? a). +interpretation "pitem ps" 'ps a = (ps ? a). +interpretation "pitem epsilon" 'epsilon = (pe ?). +interpretation "pitem empty" 'empty = (pz ?). -interpretation "patom" 'ps a = (ps ? a). -interpretation "pepsilon" 'epsilon = (pe ?). -interpretation "pempty" 'empty = (pz ?). +(* The carrier $|i|$ of an item i is the regular expression obtained from i by +removing all the points. Similarly, the carrier of a pointed regular expression +is the carrier of its item. *) -let rec forget (S: Alpha) (l : pitem S) on l: re S ≝ +let rec forget (S: DeqSet) (l : pitem S) on l: re S ≝ match l with - [ pz ⇒ ∅ + [ pz ⇒ `∅ | pe ⇒ ϵ | ps x ⇒ `x | pp x ⇒ `x | pc E1 E2 ⇒ (forget ? E1) · (forget ? E2) | po E1 E2 ⇒ (forget ? E1) + (forget ? E2) | pk E ⇒ (forget ? E)^* ]. - -(* notation < "|term 19 e|" non associative with precedence 70 for @{'forget $e}.*) -interpretation "forget" 'norm a = (forget ? a). + +interpretation "forget" 'card a = (forget ? a). + +lemma erase_dot : ∀S.∀e1,e2:pitem S. |e1 · e2| = c ? (|e1|) (|e2|). +// qed. + +lemma erase_plus : ∀S.∀i1,i2:pitem S. + |i1 + i2| = |i1| + |i2|. +// qed. + +lemma erase_star : ∀S.∀i:pitem S.|i^*| = |i|^*. +// qed. + +(* +Comparing items and pres + +Items and pres are very concrete datatypes: they can be effectively compared, +and enumerated. In particular, we can define a boolean equality beqitem and a proof +beqitem_true that it refects propositional equality, enriching the set (pitem S) +to a DeqSet. *) + +let rec beqitem S (i1,i2: pitem S) on i1 ≝ + match i1 with + [ pz ⇒ match i2 with [ pz ⇒ true | _ ⇒ false] + | pe ⇒ match i2 with [ pe ⇒ true | _ ⇒ false] + | ps y1 ⇒ match i2 with [ ps y2 ⇒ y1==y2 | _ ⇒ false] + | pp y1 ⇒ match i2 with [ pp y2 ⇒ y1==y2 | _ ⇒ false] + | po i11 i12 ⇒ match i2 with + [ po i21 i22 ⇒ beqitem S i11 i21 ∧ beqitem S i12 i22 + | _ ⇒ false] + | pc i11 i12 ⇒ match i2 with + [ pc i21 i22 ⇒ beqitem S i11 i21 ∧ beqitem S i12 i22 + | _ ⇒ false] + | pk i11 ⇒ match i2 with [ pk i21 ⇒ beqitem S i11 i21 | _ ⇒ false] + ]. + +lemma beqitem_true: ∀S,i1,i2. iff (beqitem S i1 i2 = true) (i1 = i2). +#S #i1 elim i1 + [#i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % // normalize #H destruct + |#i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % // normalize #H destruct + |#x #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % normalize #H destruct + [>(\P H) // | @(\b (refl …))] + |#x #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % normalize #H destruct + [>(\P H) // | @(\b (refl …))] + |#i11 #i12 #Hind1 #Hind2 #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % + normalize #H destruct + [cases (true_or_false (beqitem S i11 i21)) #H1 + [>(proj1 … (Hind1 i21) H1) >(proj1 … (Hind2 i22)) // >H1 in H; #H @H + |>H1 in H; normalize #abs @False_ind /2/ + ] + |>(proj2 … (Hind1 i21) (refl …)) >(proj2 … (Hind2 i22) (refl …)) // + ] + |#i11 #i12 #Hind1 #Hind2 #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % + normalize #H destruct + [cases (true_or_false (beqitem S i11 i21)) #H1 + [>(proj1 … (Hind1 i21) H1) >(proj1 … (Hind2 i22)) // >H1 in H; #H @H + |>H1 in H; normalize #abs @False_ind /2/ + ] + |>(proj2 … (Hind1 i21) (refl …)) >(proj2 … (Hind2 i22) (refl …)) // + ] + |#i3 #Hind #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i4] % + normalize #H destruct + [>(proj1 … (Hind i4) H) // |>(proj2 … (Hind i4) (refl …)) //] + ] +qed. + +definition DeqItem ≝ λS. + mk_DeqSet (pitem S) (beqitem S) (beqitem_true S). -let rec in_pl (S : Alpha) (r : pitem S) on r : word S → Prop ≝ +(* We also add a couple of unification hints to allow the type inference system +to look at (pitem S) as the carrier of a DeqSet, and at beqitem as if it was the +equality function of a DeqSet. *) + +unification hint 0 ≔ S; + X ≟ mk_DeqSet (pitem S) (beqitem S) (beqitem_true S) +(* ---------------------------------------- *) ⊢ + pitem S ≡ carr X. + +unification hint 0 ≔ S,i1,i2; + X ≟ mk_DeqSet (pitem S) (beqitem S) (beqitem_true S) +(* ---------------------------------------- *) ⊢ + beqitem S i1 i2 ≡ eqb X i1 i2. + +(* +Semantics of pointed regular expressions + +The intuitive semantic of a point is to mark the position where +we should start reading the regular expression. The language associated +to a pre is the union of the languages associated with its points. *) + +let rec in_pl (S : DeqSet) (r : pitem S) on r : word S → Prop ≝ match r with -[ pz ⇒ {} -| pe ⇒ {} -| ps _ ⇒ {} +[ pz ⇒ ∅ +| pe ⇒ ∅ +| ps _ ⇒ ∅ | pp x ⇒ { [x] } | pc r1 r2 ⇒ (in_pl ? r1) · \sem{forget ? r2} ∪ (in_pl ? r2) | po r1 r2 ⇒ (in_pl ? r1) ∪ (in_pl ? r2) @@ -158,20 +231,16 @@ match r with interpretation "in_pl" 'in_l E = (in_pl ? E). interpretation "in_pl mem" 'mem w l = (in_pl ? l w). -definition epsilon ≝ λS,b.if b then { ([ ] : word S) } else {}. - -interpretation "epsilon" 'epsilon = (epsilon ?). -notation < "ϵ b" non associative with precedence 90 for @{'app_epsilon $b}. -interpretation "epsilon lang" 'app_epsilon b = (epsilon ? b). - -definition in_prl ≝ λS : Alpha.λp:pre S. - if (\snd p) then \sem{\fst p} ∪ { ([ ] : word S) } else \sem{\fst p}. +definition in_prl ≝ λS : DeqSet.λp:pre S. + if (\snd p) then \sem{\fst p} ∪ {ϵ} else \sem{\fst p}. interpretation "in_prl mem" 'mem w l = (in_prl ? l w). interpretation "in_prl" 'in_l E = (in_prl ? E). +(* The following, trivial lemmas are only meant for rewriting purposes. *) + lemma sem_pre_true : ∀S.∀i:pitem S. - \sem{〈i,true〉} = \sem{i} ∪ { ([ ] : word S) }. + \sem{〈i,true〉} = \sem{i} ∪ {ϵ}. // qed. lemma sem_pre_false : ∀S.∀i:pitem S. @@ -202,10 +271,18 @@ lemma sem_star_w : ∀S.∀i:pitem S.∀w. \sem{i^*} w = (∃w1,w2.w1 @ w2 = w ∧ \sem{i} w1 ∧ \sem{|i|}^* w2). // qed. -lemma append_eq_nil : ∀S.∀w1,w2:word S. w1 @ w2 = [ ] → w1 = [ ]. +(* Below are a few, simple, semantic properties of items. In particular: +- not_epsilon_item : ∀S:DeqSet.∀i:pitem S. ¬ (\sem{i} ϵ). +- epsilon_pre : ∀S.∀e:pre S. (\sem{i} ϵ) ↔ (\snd e = true). +- minus_eps_item: ∀S.∀i:pitem S. \sem{i} ≐ \sem{i}-{[ ]}. +- minus_eps_pre: ∀S.∀e:pre S. \sem{\fst e} ≐ \sem{e}-{[ ]}. +The first property is proved by a simple induction on $i$; the other +results are easy corollaries. We need an auxiliary lemma first. *) + +lemma append_eq_nil : ∀S.∀w1,w2:word S. w1 @ w2 = ϵ → w1 = ϵ. #S #w1 #w2 cases w1 // #a #tl normalize #H destruct qed. -lemma not_epsilon_lp : ∀S:Alpha.∀e:pitem S. ¬ ([ ] ∈ e). +lemma not_epsilon_lp : ∀S:DeqSet.∀e:pitem S. ¬ (ϵ ∈ e). #S #e elim e normalize /2/ [#r1 #r2 * #n1 #n2 % * /2/ * #w1 * #w2 * * #H >(append_eq_nil …H…) /2/ @@ -214,200 +291,173 @@ lemma not_epsilon_lp : ∀S:Alpha.∀e:pitem S. ¬ ([ ] ∈ e). ] qed. -(* lemma 12 *) -lemma epsilon_to_true : ∀S.∀e:pre S. [ ] ∈ e → \snd e = true. +lemma epsilon_to_true : ∀S.∀e:pre S. ϵ ∈ e → \snd e = true. #S * #i #b cases b // normalize #H @False_ind /2/ qed. -lemma true_to_epsilon : ∀S.∀e:pre S. \snd e = true → [ ] ∈ e. +lemma true_to_epsilon : ∀S.∀e:pre S. \snd e = true → ϵ ∈ e. #S * #i #b #btrue normalize in btrue; >btrue %2 // qed. -definition lo ≝ λS:Alpha.λa,b:pre S.〈\fst a + \fst b,\snd a || \snd b〉. -notation "a ⊕ b" left associative with precedence 60 for @{'oplus $a $b}. +lemma minus_eps_item: ∀S.∀i:pitem S. \sem{i} ≐ \sem{i}-{[ ]}. +#S #i #w % + [#H whd % // normalize @(not_to_not … (not_epsilon_lp …i)) // + |* // + ] +qed. + +lemma minus_eps_pre: ∀S.∀e:pre S. \sem{\fst e} ≐ \sem{e}-{[ ]}. +#S * #i * + [>sem_pre_true normalize in ⊢ (??%?); #w % + [/3/ | * * // #H1 #H2 @False_ind @(absurd …H1 H2)] + |>sem_pre_false normalize in ⊢ (??%?); #w % [ /3/ | * // ] + ] +qed. + +(* +Broadcasting points + +Intuitively, a regular expression e must be understood as a pointed expression with a single +point in front of it. Since however we only allow points before symbols, we must broadcast +this initial point inside e traversing all nullable subexpressions, that essentially corresponds +to the ϵ-closure operation on automata. We use the notation •(_) to denote such an operation; +its definition is the expected one: let us start discussing an example. + +Example +Let us broadcast a point inside (a + ϵ)(b*a + b)b. We start working in parallel on the +first occurrence of a (where the point stops), and on ϵ that gets traversed. We have hence +reached the end of a + ϵ and we must pursue broadcasting inside (b*a + b)b. Again, we work in +parallel on the two additive subterms b^*a and b; the first point is allowed to both enter the +star, and to traverse it, stopping in front of a; the second point just stops in front of b. +No point reached that end of b^*a + b hence no further propagation is possible. In conclusion: + •((a + ϵ)(b^*a + b)b) = 〈(•a + ϵ)((•b)^*•a + •b)b, false〉 +*) + +(* Broadcasting a point inside an item generates a pre, since the point could possibly reach +the end of the expression. +Broadcasting inside a i1+i2 amounts to broadcast in parallel inside i1 and i2. +If we define + 〈i1,b1〉 ⊕ 〈i2,b2〉 = 〈i1 + i2, b1 ∨ b2〉 +then, we just have •(i1+i2) = •(i1)⊕ •(i2). +*) + +definition lo ≝ λS:DeqSet.λa,b:pre S.〈\fst a + \fst b,\snd a ∨ \snd b〉. +notation "a ⊕ b" left associative with precedence 65 for @{'oplus $a $b}. interpretation "oplus" 'oplus a b = (lo ? a b). -lemma lo_def: ∀S.∀i1,i2:pitem S.∀b1,b2. 〈i1,b1〉⊕〈i2,b2〉=〈i1+i2,b1||b2〉. +lemma lo_def: ∀S.∀i1,i2:pitem S.∀b1,b2. 〈i1,b1〉⊕〈i2,b2〉=〈i1+i2,b1∨b2〉. // qed. -definition pre_concat_r ≝ λS:Alpha.λi:pitem S.λe:pre S. - match e with [ pair i1 b ⇒ 〈i · i1, b〉]. +(* +Concatenation is a bit more complex. In order to broadcast a point inside i1 · i2 +we should start broadcasting it inside i1 and then proceed into i2 if and only if a +point reached the end of i1. This suggests to define •(i1 · i2) as •(i1) ▹ i2, where +e ▹ i is a general operation of concatenation between a pre and an item, defined by +cases on the boolean in e: + + 〈i1,true〉 ▹ i2 = i1 ◃ •(i_2) + 〈i1,false〉 ▹ i2 = i1 · i2 + +In turn, ◃ says how to concatenate an item with a pre, that is however extremely simple: + + i1 ◃ 〈i1,b〉 = 〈i_1 · i2, b〉 + +Let us come to the formalized definitions: +*) + +definition pre_concat_r ≝ λS:DeqSet.λi:pitem S.λe:pre S. + match e with [ mk_Prod i1 b ⇒ 〈i · i1, b〉]. -notation "i ◂ e" left associative with precedence 60 for @{'ltrif $i $e}. -interpretation "pre_concat_r" 'ltrif i e = (pre_concat_r ? i e). - -definition eq_f1 ≝ λS.λa,b:word S → Prop.∀w.a w ↔ b w. -notation "A =1 B" non associative with precedence 45 for @{'eq_f1 $A $B}. -interpretation "eq f1" 'eq_f1 a b = (eq_f1 ? a b). +notation "i ◃ e" left associative with precedence 65 for @{'lhd $i $e}. +interpretation "pre_concat_r" 'lhd i e = (pre_concat_r ? i e). + +(* The behaviour of ◃ is summarized by the following, easy lemma: *) lemma eq_to_ex_eq: ∀S.∀A,B:word S → Prop. - A = B → A =1 B. + A = B → A ≐ B. #S #A #B #H >H /2/ qed. -lemma ext_eq_trans: ∀S.∀A,B,C:word S → Prop. - A =1 B → B =1 C → A =1 C. -#S #A #B #C #eqAB #eqBC #w cases (eqAB w) cases (eqBC w) /4/ -qed. - -lemma union_assoc: ∀S.∀A,B,C:word S → Prop. - A ∪ B ∪ C =1 A ∪ (B ∪ C). -#S #A #B #C #w % [* [* /3/ | /3/] | * [/3/ | * /3/] -qed. - lemma sem_pre_concat_r : ∀S,i.∀e:pre S. - \sem{i ◂ e} =1 \sem{i} · \sem{|\fst e|} ∪ \sem{e}. -#S #i * #i1 #b1 cases b1 /2/ + \sem{i ◃ e} ≐ \sem{i} · \sem{|\fst e|} ∪ \sem{e}. +#S #i * #i1 #b1 cases b1 [2: @eq_to_ex_eq //] >sem_pre_true >sem_cat >sem_pre_true /2/ qed. - -definition lc ≝ λS:Alpha.λbcast:∀S:Alpha.pitem S → pre S.λe1:pre S.λi2:pitem S. + +(* The definition of $•(-)$ (eclose) and ▹ (pre_concat_l) are mutually recursive. +In this situation, a viable alternative that is usually simpler to reason about, +is to abstract one of the two functions with respect to the other. In particular +we abstract pre_concat_l with respect to an input bcast function from items to +pres. *) + +definition pre_concat_l ≝ λS:DeqSet.λbcast:∀S:DeqSet.pitem S → pre S.λe1:pre S.λi2:pitem S. match e1 with - [ pair i1 b1 ⇒ match b1 with - [ true ⇒ (i1 ◂ (bcast ? i2)) + [ mk_Prod i1 b1 ⇒ match b1 with + [ true ⇒ (i1 ◃ (bcast ? i2)) | false ⇒ 〈i1 · i2,false〉 ] ]. - -definition lift ≝ λS.λf:pitem S →pre S.λe:pre S. - match e with - [ pair i b ⇒ 〈\fst (f i), \snd (f i) || b〉]. -notation "a ▸ b" left associative with precedence 60 for @{'lc eclose $a $b}. -interpretation "lc" 'lc op a b = (lc ? op a b). +notation "a ▹ b" left associative with precedence 65 for @{'tril eclose $a $b}. +interpretation "item-pre concat" 'tril op a b = (pre_concat_l ? op a b). -definition lk ≝ λS:Alpha.λbcast:∀S:Alpha.∀E:pitem S.pre S.λe:pre S. - match e with - [ pair i1 b1 ⇒ - match b1 with - [true ⇒ 〈(\fst (bcast ? i1))^*, true〉 - |false ⇒ 〈i1^*,false〉 - ] - ]. - -(* -lemma oplus_tt : ∀S: Alpha.∀i1,i2:pitem S. - 〈i1,true〉 ⊕ 〈i2,true〉 = 〈i1 + i2,true〉. -// qed. - -lemma oplus_tf : ∀S: Alpha.∀i1,i2:pitem S. - 〈i1,true〉 ⊕ 〈i2,false〉 = 〈i1 + i2,true〉. -// qed. - -lemma oplus_ft : ∀S: Alpha.∀i1,i2:pitem S. - 〈i1,false〉 ⊕ 〈i2,true〉 = 〈i1 + i2,true〉. -// qed. - -lemma oplus_ff : ∀S: Alpha.∀i1,i2:pitem S. - 〈i1,false〉 ⊕ 〈i2,false〉 = 〈i1 + i2,false〉. -// qed. *) - -(* notation < "a \sup ⊛" non associative with precedence 90 for @{'lk $op $a}.*) -interpretation "lk" 'lk op a = (lk ? op a). -notation "a^⊛" non associative with precedence 90 for @{'lk eclose $a}. +notation "•" non associative with precedence 65 for @{eclose ?}. -notation "•" non associative with precedence 60 for @{eclose ?}. +(* We are ready to give the formal definition of the broadcasting operation. *) -let rec eclose (S: Alpha) (i: pitem S) on i : pre S ≝ +let rec eclose (S: DeqSet) (i: pitem S) on i : pre S ≝ match i with - [ pz ⇒ 〈 ∅, false 〉 + [ pz ⇒ 〈 `∅, false 〉 | pe ⇒ 〈 ϵ, true 〉 | ps x ⇒ 〈 `.x, false〉 | pp x ⇒ 〈 `.x, false 〉 | po i1 i2 ⇒ •i1 ⊕ •i2 - | pc i1 i2 ⇒ •i1 ▸ i2 + | pc i1 i2 ⇒ •i1 ▹ i2 | pk i ⇒ 〈(\fst (•i))^*,true〉]. -notation "• x" non associative with precedence 60 for @{'eclose $x}. +notation "• x" non associative with precedence 65 for @{'eclose $x}. interpretation "eclose" 'eclose x = (eclose ? x). -lemma eclose_plus: ∀S:Alpha.∀i1,i2:pitem S. +(* Here are a few simple properties of ▹ and •(-) *) + +lemma eclose_plus: ∀S:DeqSet.∀i1,i2:pitem S. •(i1 + i2) = •i1 ⊕ •i2. // qed. -lemma eclose_dot: ∀S:Alpha.∀i1,i2:pitem S. - •(i1 · i2) = •i1 ▸ i2. +lemma eclose_dot: ∀S:DeqSet.∀i1,i2:pitem S. + •(i1 · i2) = •i1 ▹ i2. // qed. -lemma eclose_star: ∀S:Alpha.∀i:pitem S. +lemma eclose_star: ∀S:DeqSet.∀i:pitem S. •i^* = 〈(\fst(•i))^*,true〉. // qed. -definition reclose ≝ λS. lift S (eclose S). -interpretation "reclose" 'eclose x = (reclose ? x). - -lemma epsilon_or : ∀S:Alpha.∀b1,b2. epsilon S (b1 || b2) =1 ϵ b1 ∪ ϵ b2. -#S #b1 #b2 #w % cases b1 cases b2 normalize /2/ * /2/ * ; -qed. - -(* -lemma cupA : ∀S.∀a,b,c:word S → Prop.a ∪ b ∪ c = a ∪ (b ∪ c). -#S a b c; napply extP; #w; nnormalize; @; *; /3/; *; /3/; nqed. - -nlemma cupC : ∀S. ∀a,b:word S → Prop.a ∪ b = b ∪ a. -#S a b; napply extP; #w; @; *; nnormalize; /2/; nqed.*) - -(* theorem 16: 2 *) -lemma sem_oplus: ∀S:Alpha.∀e1,e2:pre S. - \sem{e1 ⊕ e2} =1 \sem{e1} ∪ \sem{e2}. -#S * #i1 #b1 * #i2 #b2 #w % - [cases b1 cases b2 normalize /2/ * /3/ * /3/ - |cases b1 cases b2 normalize /2/ * /3/ * /3/ - ] -qed. - lemma odot_true : ∀S.∀i1,i2:pitem S. - 〈i1,true〉 ▸ i2 = i1 ◂ (•i2). + 〈i1,true〉 ▹ i2 = i1 ◃ (•i2). // qed. lemma odot_true_bis : ∀S.∀i1,i2:pitem S. - 〈i1,true〉 ▸ i2 = 〈i1 · \fst (•i2), \snd (•i2)〉. + 〈i1,true〉 ▹ i2 = 〈i1 · \fst (•i2), \snd (•i2)〉. #S #i1 #i2 normalize cases (•i2) // qed. lemma odot_false: ∀S.∀i1,i2:pitem S. - 〈i1,false〉 ▸ i2 = 〈i1 · i2, false〉. + 〈i1,false〉 ▹ i2 = 〈i1 · i2, false〉. // qed. -lemma LcatE : ∀S.∀e1,e2:pitem S. - \sem{e1 · e2} = \sem{e1} · \sem{|e2|} ∪ \sem{e2}. -// qed. - -(* -nlemma cup_dotD : ∀S.∀p,q,r:word S → Prop.(p ∪ q) · r = (p · r) ∪ (q · r). -#S p q r; napply extP; #w; nnormalize; @; -##[ *; #x; *; #y; *; *; #defw; *; /7/ by or_introl, or_intror, ex_intro, conj; -##| *; *; #x; *; #y; *; *; /7/ by or_introl, or_intror, ex_intro, conj; ##] -nqed. - -nlemma cup0 :∀S.∀p:word S → Prop.p ∪ {} = p. -#S p; napply extP; #w; nnormalize; @; /2/; *; //; *; nqed.*) +(* The definition of •(-) (eclose) can then be lifted from items to pres +in the obvious way. *) -lemma erase_dot : ∀S.∀e1,e2:pitem S. |e1 · e2| = c ? (|e1|) (|e2|). -// qed. - -lemma erase_plus : ∀S.∀i1,i2:pitem S. - |i1 + i2| = |i1| + |i2|. -// qed. - -lemma erase_star : ∀S.∀i:pitem S.|i^*| = |i|^*. -// qed. - -definition substract := λS.λp,q:word S → Prop.λw.p w ∧ ¬ q w. -interpretation "substract" 'minus a b = (substract ? a b). - -(* nlemma cup_sub: ∀S.∀a,b:word S → Prop. ¬ (a []) → a ∪ (b - {[]}) = (a ∪ b) - {[]}. -#S a b c; napply extP; #w; nnormalize; @; *; /4/; *; /4/; nqed. - -nlemma sub0 : ∀S.∀a:word S → Prop. a - {} = a. -#S a; napply extP; #w; nnormalize; @; /3/; *; //; nqed. - -nlemma subK : ∀S.∀a:word S → Prop. a - a = {}. -#S a; napply extP; #w; nnormalize; @; *; /2/; nqed. +definition lift ≝ λS.λf:pitem S →pre S.λe:pre S. + match e with + [ mk_Prod i b ⇒ 〈\fst (f i), \snd (f i) ∨ b〉]. + +definition preclose ≝ λS. lift S (eclose S). +interpretation "preclose" 'eclose x = (preclose ? x). -nlemma subW : ∀S.∀a,b:word S → Prop.∀w.(a - b) w → a w. -#S a b w; nnormalize; *; //; nqed. *) +(* Obviously, broadcasting does not change the carrier of the item, +as it is easily proved by structural induction. *) lemma erase_bull : ∀S.∀i:pitem S. |\fst (•i)| = |i|. #S #i elim i // @@ -419,271 +469,252 @@ lemma erase_bull : ∀S.∀i:pitem S. |\fst (•i)| = |i|. ] qed. -axiom eq_ext_sym: ∀S.∀A,B:word S →Prop. - A =1 B → B =1 A. - -axiom union_ext_l: ∀S.∀A,B,C:word S →Prop. - A =1 C → A ∪ B =1 C ∪ B. - -axiom union_ext_r: ∀S.∀A,B,C:word S →Prop. - B =1 C → A ∪ B =1 A ∪ C. - -axiom union_comm : ∀S.∀A,B:word S →Prop. - A ∪ B =1 B ∪ A. - -axiom union_idemp: ∀S.∀A:word S →Prop. - A ∪ A =1 A. - -axiom cat_ext_l: ∀S.∀A,B,C:word S →Prop. - A =1 C → A · B =1 C · B. - -axiom cat_ext_r: ∀S.∀A,B,C:word S →Prop. - B =1 C → A · B =1 A · C. - -lemma distr_cat_r: ∀S.∀A,B,C:word S →Prop. - (A ∪ B) · C =1 A · C ∪ B · C. -#S #A #B #C #w % - [* #w1 * #w2 * * #eqw * /6/ |* * #w1 * #w2 * * /6/] -qed. - -axiom fix_star: ∀S.∀A:word S → Prop. - A^* =1 A · A^* ∪ { [ ] }. +(* We are now ready to state the main semantic properties of ⊕, ◃ and •(-): -axiom star_epsilon: ∀S:Alpha.∀A:word S → Prop. - A^* ∪ { [ ] } =1 A^*. +sem_oplus: \sem{e1 ⊕ e2} ≐ \sem{e1} ∪ \sem{e2} +sem_pcl: \sem{e1 ▹ i2} ≐ \sem{e1} · \sem{|i2|} ∪ \sem{i2} +sem_bullet \sem{•i} ≐ \sem{i} ∪ \sem{|i|} -lemma sem_eclose_star: ∀S:Alpha.∀i:pitem S. - \sem{〈i^*,true〉} =1 \sem{〈i,false〉}·\sem{|i|}^* ∪ { [ ] }. -/2/ qed. +The proof of sem_oplus is straightforward. *) -(* -lemma sem_eclose_star: ∀S:Alpha.∀i:pitem S. - \sem{〈i^*,true〉} =1 \sem{〈i,true〉}·\sem{|i|}^* ∪ { [ ] }. -/2/ qed. - -#S #i #b cases b - [>sem_pre_true >sem_star - |/2/ - ] *) - -(* this kind of results are pretty bad for automation; - better not index them *) -lemma epsilon_cat_r: ∀S.∀A:word S →Prop. - A · { [ ] } =1 A. -#S #A #w % - [* #w1 * #w2 * * #eqw #inw1 normalize #eqw2 odot_false >sem_pre_false >sem_pre_false >sem_cat /2/ - |#H >odot_true >sem_pre_true @(ext_eq_trans … (sem_pre_concat_r …)) - >erase_bull @ext_eq_trans [|@(union_ext_r … H)] - @ext_eq_trans [|@union_ext_r [|@union_comm ]] - @ext_eq_trans [|@eq_ext_sym @union_assoc ] /3/ + |#H >odot_true >sem_pre_true @(eqP_trans … (sem_pre_concat_r …)) + >erase_bull @eqP_trans [|@(eqP_union_l … H)] + @eqP_trans [|@eqP_union_l[|@union_comm ]] + @eqP_trans [|@eqP_sym @union_assoc ] /3/ ] qed. - -axiom star_fix : - ∀S.∀X:word S → Prop.(X - {[ ]}) · X^* ∪ {[ ]} =1 X^*. -axiom sem_fst: ∀S.∀e:pre S. \sem{\fst e} =1 \sem{e}-{[ ]}. - -axiom sem_fst_aux: ∀S.∀e:pre S.∀i:pitem S.∀A. - \sem{e} =1 \sem{i} ∪ A → \sem{\fst e} =1 \sem{i} ∪ (A - {[ ]}). +lemma minus_eps_pre_aux: ∀S.∀e:pre S.∀i:pitem S.∀A. + \sem{e} ≐ \sem{i} ∪ A → \sem{\fst e} ≐ \sem{i} ∪ (A - {[ ]}). +#S #e #i #A #seme +@eqP_trans [|@minus_eps_pre] +@eqP_trans [||@eqP_union_r [|@eqP_sym @minus_eps_item]] +@eqP_trans [||@distribute_substract] +@eqP_substract_r // +qed. -(* theorem 16: 1 *) -theorem sem_bull: ∀S:Alpha. ∀e:pitem S. \sem{•e} =1 \sem{e} ∪ \sem{|e|}. +theorem sem_bull: ∀S:DeqSet. ∀i:pitem S. \sem{•i} ≐ \sem{i} ∪ \sem{|i|}. #S #e elim e [#w normalize % [/2/ | * //] |/2/ |#x normalize #w % [ /2/ | * [@False_ind | //]] |#x normalize #w % [ /2/ | * // ] - |#i1 #i2 #IH1 #IH2 >eclose_dot - @ext_eq_trans [|@odot_dot_aux //] >sem_cat - @ext_eq_trans - [|@union_ext_l - [|@ext_eq_trans [|@(cat_ext_l … IH1)] @distr_cat_r]] - @ext_eq_trans [|@union_assoc] - @ext_eq_trans [||@eq_ext_sym @union_assoc] - @union_ext_r // + |#i1 #i2 #IH1 #IH2 + (* lhs = \sem{•(i1 ·i2)} *) + >eclose_dot + (* lhs =\sem{•(i1) ▹ i2)} *) + @eqP_trans [|@odot_dot_aux //] + (* lhs = \sem{•(i1)·\sem{|i2|}∪\sem{i2} *) + @eqP_trans + [|@eqP_union_r + [|@eqP_trans [|@(cat_ext_l … IH1)] @distr_cat_r]] + (* lhs = \sem{i1}·\sem{|i2|}∪\sem{|i1|}·\sem{|i2|}∪\sem{i2} *) + @eqP_trans [|@union_assoc] + (* lhs = \sem{i1}·\sem{|i2|}∪(\sem{|i1|}·\sem{|i2|}∪\sem{i2}) *) + (* Now we work on the rhs that is + rhs = \sem{i1·i2} ∪ \sem{|i1·i2|} *) + >sem_cat + (* rhs = \sem{i1}·\sem{|i2|} ∪ \sem{i2} ∪ \sem{|i1·i2|} *) + @eqP_trans [||@eqP_sym @union_assoc] + (* rhs = \sem{i1}·\sem{|i2|}∪ (\sem{i2} ∪ \sem{|i1·i2|}) *) + @eqP_union_l @union_comm |#i1 #i2 #IH1 #IH2 >eclose_plus - @ext_eq_trans [|@sem_oplus] >sem_plus >erase_plus - @ext_eq_trans [|@(union_ext_r … IH2)] - @ext_eq_trans [|@eq_ext_sym @union_assoc] - @ext_eq_trans [||@union_assoc] @union_ext_l - @ext_eq_trans [||@eq_ext_sym @union_assoc] - @ext_eq_trans [||@union_ext_r [|@union_comm]] - @ext_eq_trans [||@union_assoc] /3/ + @eqP_trans [|@sem_oplus] >sem_plus >erase_plus + @eqP_trans [|@(eqP_union_l … IH2)] + @eqP_trans [|@eqP_sym @union_assoc] + @eqP_trans [||@union_assoc] @eqP_union_r + @eqP_trans [||@eqP_sym @union_assoc] + @eqP_trans [||@eqP_union_l [|@union_comm]] + @eqP_trans [||@union_assoc] /2/ |#i #H >sem_pre_true >sem_star >erase_bull >sem_star - @ext_eq_trans [|@union_ext_l [|@cat_ext_l [|@sem_fst_aux //]]] - @ext_eq_trans [|@union_ext_l [|@distr_cat_r]] - @ext_eq_trans [|@union_assoc] @union_ext_r >erase_star @star_fix + @eqP_trans [|@eqP_union_r [|@cat_ext_l [|@minus_eps_pre_aux //]]] + @eqP_trans [|@eqP_union_r [|@distr_cat_r]] + @eqP_trans [|@union_assoc] @eqP_union_l >erase_star + @eqP_sym @star_fix_eps ] qed. -definition lifted_cat ≝ λS:Alpha.λe:pre S. - lift S (lc S eclose e). +(* +Blank item + +As a corollary of theorem sem_bullet, given a regular expression e, we can easily +find an item with the same semantics of $e$: it is enough to get an item (blank e) +having e as carrier and no point, and then broadcast a point in it. The semantics of +(blank e) is obviously the empty language: from the point of view of the automaton, +it corresponds with the pit state. *) + +let rec blank (S: DeqSet) (i: re S) on i :pitem S ≝ + match i with + [ z ⇒ `∅ + | e ⇒ ϵ + | s y ⇒ `y + | o e1 e2 ⇒ (blank S e1) + (blank S e2) + | c e1 e2 ⇒ (blank S e1) · (blank S e2) + | k e ⇒ (blank S e)^* ]. + +lemma forget_blank: ∀S.∀e:re S.|blank S e| = e. +#S #e elim e normalize // +qed. + +lemma sem_blank: ∀S.∀e:re S.\sem{blank S e} ≐ ∅. +#S #e elim e + [1,2:@eq_to_ex_eq // + |#s @eq_to_ex_eq // + |#e1 #e2 #Hind1 #Hind2 >sem_cat + @eqP_trans [||@(union_empty_r … ∅)] + @eqP_trans [|@eqP_union_l[|@Hind2]] @eqP_union_r + @eqP_trans [||@(cat_empty_l … ?)] @cat_ext_l @Hind1 + |#e1 #e2 #Hind1 #Hind2 >sem_plus + @eqP_trans [||@(union_empty_r … ∅)] + @eqP_trans [|@eqP_union_l[|@Hind2]] @eqP_union_r @Hind1 + |#e #Hind >sem_star + @eqP_trans [||@(cat_empty_l … ?)] @cat_ext_l @Hind + ] +qed. + +theorem re_embedding: ∀S.∀e:re S. + \sem{•(blank S e)} ≐ \sem{e}. +#S #e @eqP_trans [|@sem_bull] >forget_blank +@eqP_trans [|@eqP_union_r [|@sem_blank]] +@eqP_trans [|@union_comm] @union_empty_r. +qed. + +(* +Lifted Operators + +Plus and bullet have been already lifted from items to pres. We can now +do a similar job for concatenation ⊙ and Kleene's star ⊛. *) + +definition lifted_cat ≝ λS:DeqSet.λe:pre S. + lift S (pre_concat_l S eclose e). notation "e1 ⊙ e2" left associative with precedence 70 for @{'odot $e1 $e2}. interpretation "lifted cat" 'odot e1 e2 = (lifted_cat ? e1 e2). -lemma sem_odot_true: ∀S:Alpha.∀e1:pre S.∀i. - \sem{e1 ⊙ 〈i,true〉} =1 \sem{e1 ▸ i} ∪ { [ ] }. +lemma odot_true_b : ∀S.∀i1,i2:pitem S.∀b. + 〈i1,true〉 ⊙ 〈i2,b〉 = 〈i1 · (\fst (•i2)),\snd (•i2) ∨ b〉. +#S #i1 #i2 #b normalize in ⊢ (??%?); cases (•i2) // +qed. + +lemma odot_false_b : ∀S.∀i1,i2:pitem S.∀b. + 〈i1,false〉 ⊙ 〈i2,b〉 = 〈i1 · i2 ,b〉. +// +qed. + +lemma erase_odot:∀S.∀e1,e2:pre S. + |\fst (e1 ⊙ e2)| = |\fst e1| · (|\fst e2|). +#S * #i1 * * #i2 #b2 // >odot_true_b // +qed. + +(* Let us come to the star operation: *) + +definition lk ≝ λS:DeqSet.λe:pre S. + match e with + [ mk_Prod i1 b1 ⇒ + match b1 with + [true ⇒ 〈(\fst (eclose ? i1))^*, true〉 + |false ⇒ 〈i1^*,false〉 + ] + ]. + +(* notation < "a \sup ⊛" non associative with precedence 90 for @{'lk $a}.*) +interpretation "lk" 'lk a = (lk ? a). +notation "a^⊛" non associative with precedence 90 for @{'lk $a}. + + +lemma ostar_true: ∀S.∀i:pitem S. + 〈i,true〉^⊛ = 〈(\fst (•i))^*, true〉. +// qed. + +lemma ostar_false: ∀S.∀i:pitem S. + 〈i,false〉^⊛ = 〈i^*, false〉. +// qed. + +lemma erase_ostar: ∀S.∀e:pre S. + |\fst (e^⊛)| = |\fst e|^*. +#S * #i * // qed. + +lemma sem_odot_true: ∀S:DeqSet.∀e1:pre S.∀i. + \sem{e1 ⊙ 〈i,true〉} ≐ \sem{e1 ▹ i} ∪ { [ ] }. #S #e1 #i -cut (e1 ⊙ 〈i,true〉 = 〈\fst (e1 ▸ i), \snd(e1 ▸ i) || true〉) [//] -#H >H cases (e1 ▸ i) #i1 #b1 cases b1 - [>sem_pre_true @ext_eq_trans [||@eq_ext_sym @union_assoc] - @union_ext_r /2/ +cut (e1 ⊙ 〈i,true〉 = 〈\fst (e1 ▹ i), \snd(e1 ▹ i) ∨ true〉) [//] +#H >H cases (e1 ▹ i) #i1 #b1 cases b1 + [>sem_pre_true @eqP_trans [||@eqP_sym @union_assoc] + @eqP_union_l /2/ |/2/ ] qed. -lemma eq_odot_false: ∀S:Alpha.∀e1:pre S.∀i. - e1 ⊙ 〈i,false〉 = e1 ▸ i. +lemma eq_odot_false: ∀S:DeqSet.∀e1:pre S.∀i. + e1 ⊙ 〈i,false〉 = e1 ▹ i. #S #e1 #i -cut (e1 ⊙ 〈i,false〉 = 〈\fst (e1 ▸ i), \snd(e1 ▸ i) || false〉) [//] -cases (e1 ▸ i) #i1 #b1 cases b1 #H @H +cut (e1 ⊙ 〈i,false〉 = 〈\fst (e1 ▹ i), \snd(e1 ▹ i) ∨ false〉) [//] +cases (e1 ▹ i) #i1 #b1 cases b1 #H @H qed. +(* We conclude this section with the proof of the main semantic properties +of ⊙ and ⊛. *) + lemma sem_odot: - ∀S.∀e1,e2: pre S. \sem{e1 ⊙ e2} =1 \sem{e1}· \sem{|\fst e2|} ∪ \sem{e2}. + ∀S.∀e1,e2: pre S. \sem{e1 ⊙ e2} ≐ \sem{e1}· \sem{|\fst e2|} ∪ \sem{e2}. #S #e1 * #i2 * [>sem_pre_true - @ext_eq_trans [|@sem_odot_true] - @ext_eq_trans [||@union_assoc] @union_ext_l @odot_dot_aux // + @eqP_trans [|@sem_odot_true] + @eqP_trans [||@union_assoc] @eqP_union_r @odot_dot_aux // |>sem_pre_false >eq_odot_false @odot_dot_aux // ] qed. - -(* -nlemma dot_star_epsilon : ∀S.∀e:re S.𝐋 e · 𝐋 e^* ∪ {[]} = 𝐋 e^*. -#S e; napply extP; #w; nnormalize; @; -##[ *; ##[##2: #H; nrewrite < H; @[]; /3/] *; #w1; *; #w2; - *; *; #defw Hw1; *; #wl; *; #defw2 Hwl; @(w1 :: wl); - nrewrite < defw; nrewrite < defw2; @; //; @;//; -##| *; #wl; *; #defw Hwl; ncases wl in defw Hwl; ##[#defw; #; @2; nrewrite < defw; //] - #x xs defw; *; #Hx Hxs; @; @x; @(flatten ? xs); nrewrite < defw; - @; /2/; @xs; /2/;##] - nqed. - -nlemma nil_star : ∀S.∀e:re S. [ ] ∈ e^*. -#S e; @[]; /2/; nqed. - -nlemma cupID : ∀S.∀l:word S → Prop.l ∪ l = l. -#S l; napply extP; #w; @; ##[*]//; #; @; //; nqed. - -nlemma cup_star_nil : ∀S.∀l:word S → Prop. l^* ∪ {[]} = l^*. -#S a; napply extP; #w; @; ##[*; //; #H; nrewrite < H; @[]; @; //] #;@; //;nqed. - -nlemma rcanc_sing : ∀S.∀A,C:word S → Prop.∀b:word S . - ¬ (A b) → A ∪ { (b) } = C → A = C - { (b) }. -#S A C b nbA defC; nrewrite < defC; napply extP; #w; @; -##[ #Aw; /3/| *; *; //; #H nH; ncases nH; #abs; nlapply (abs H); *] -nqed. -*) - -(* theorem 16: 4 *) + theorem sem_ostar: ∀S.∀e:pre S. - \sem{e^⊛} =1 \sem{e} · \sem{|\fst e|}^*. + \sem{e^⊛} ≐ \sem{e} · \sem{|\fst e|}^*. #S * #i #b cases b - [>sem_pre_true >sem_pre_true >sem_star >erase_bull - @ext_eq_trans [|@union_ext_l [|@cat_ext_l [|@sem_fst_aux //]]] - @ext_eq_trans [|@union_ext_l [|@distr_cat_r]] - @ext_eq_trans [||@eq_ext_sym @distr_cat_r] - @ext_eq_trans [|@union_assoc] @union_ext_r - @ext_eq_trans [||@eq_ext_sym @epsilon_cat_l] @star_fix + [(* lhs = \sem{〈i,true〉^⊛} *) + >sem_pre_true (* >sem_pre_true *) + (* lhs = \sem{(\fst (•i))^*}∪{ϵ} *) + >sem_star >erase_bull + (* lhs = \sem{\fst (•i)}·(\sem{|i|)^*∪{ϵ} *) + @eqP_trans [|@eqP_union_r[|@cat_ext_l [|@minus_eps_pre_aux //]]] + (* lhs = (\sem{i}∪(\sem{|i|}-{ϵ})·(\sem{|i|)^*∪{ϵ} *) + @eqP_trans [|@eqP_union_r [|@distr_cat_r]] + (* lhs = (\sem{i}·(\sem{|i|)^*∪(\sem{|i|}-{ϵ})·(\sem{|i|)^*∪{ϵ} *) + @eqP_trans [|@union_assoc] + (* lhs = (\sem{i}·(\sem{|i|)^*∪((\sem{|i|}-{ϵ})·(\sem{|i|)^*∪{ϵ}) *) + @eqP_trans [|@eqP_union_l[|@eqP_sym @star_fix_eps]] + (* lhs = (\sem{i}·(\sem{|i|)^*∪(\sem{|i|)^* *) + (* now we work on the right hand side, that is + rhs = \sem{〈i,true〉}·(\sem{|i|}^* *) + @eqP_trans [||@eqP_sym @distr_cat_r] + (* rhs = (\sem{i}·(\sem{|i|)^*∪{ϵ}·(\sem{|i|)^* *) + @eqP_union_l @eqP_sym @epsilon_cat_l |>sem_pre_false >sem_pre_false >sem_star /2/ ] qed. - -(* -nlet rec pre_of_re (S : Alpha) (e : re S) on e : pitem S ≝ - match e with - [ z ⇒ pz ? - | e ⇒ pe ? - | s x ⇒ ps ? x - | c e1 e2 ⇒ pc ? (pre_of_re ? e1) (pre_of_re ? e2) - | o e1 e2 ⇒ po ? (pre_of_re ? e1) (pre_of_re ? e2) - | k e1 ⇒ pk ? (pre_of_re ? e1)]. - -nlemma notFalse : ¬False. @; //; nqed. - -nlemma dot0 : ∀S.∀A:word S → Prop. {} · A = {}. -#S A; nnormalize; napply extP; #w; @; ##[##2: *] -*; #w1; *; #w2; *; *; //; nqed. - -nlemma Lp_pre_of_re : ∀S.∀e:re S. 𝐋\p (pre_of_re ? e) = {}. -#S e; nelim e; ##[##1,2,3: //] -##[ #e1 e2 H1 H2; nchange in match (𝐋\p (pre_of_re S (e1 e2))) with (?∪?); - nrewrite > H1; nrewrite > H2; nrewrite > (dot0…); nrewrite > (cupID…);// -##| #e1 e2 H1 H2; nchange in match (𝐋\p (pre_of_re S (e1+e2))) with (?∪?); - nrewrite > H1; nrewrite > H2; nrewrite > (cupID…); // -##| #e1 H1; nchange in match (𝐋\p (pre_of_re S (e1^* ))) with (𝐋\p (pre_of_re ??) · ?); - nrewrite > H1; napply dot0; ##] -nqed. - -nlemma erase_pre_of_reK : ∀S.∀e. 𝐋 |pre_of_re S e| = 𝐋 e. -#S A; nelim A; //; -##[ #e1 e2 H1 H2; nchange in match (𝐋 (e1 · e2)) with (𝐋 e1·?); - nrewrite < H1; nrewrite < H2; // -##| #e1 e2 H1 H2; nchange in match (𝐋 (e1 + e2)) with (𝐋 e1 ∪ ?); - nrewrite < H1; nrewrite < H2; // -##| #e1 H1; nchange in match (𝐋 (e1^* )) with ((𝐋 e1)^* ); - nrewrite < H1; //] -nqed. - -(* corollary 17 *) -nlemma L_Lp_bull : ∀S.∀e:re S.𝐋 e = 𝐋\p (•pre_of_re ? e). -#S e; nrewrite > (bull_cup…); nrewrite > (Lp_pre_of_re…); -nrewrite > (cupC…); nrewrite > (cup0…); nrewrite > (erase_pre_of_reK…); //; -nqed. - -nlemma Pext : ∀S.∀f,g:word S → Prop. f = g → ∀w.f w → g w. -#S f g H; nrewrite > H; //; nqed. - -(* corollary 18 *) -ntheorem bull_true_epsilon : ∀S.∀e:pitem S. \snd (•e) = true ↔ [ ] ∈ |e|. -#S e; @; -##[ #defsnde; nlapply (bull_cup ? e); nchange in match (𝐋\p (•e)) with (?∪?); - nrewrite > defsnde; #H; - nlapply (Pext ??? H [ ] ?); ##[ @2; //] *; //; - -*) -