X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fre%2Fre.ma;h=8ba714b82592f01047735b685663a64ed200f3d5;hb=7c9d99dfb049d726491b71f07ba6a9b088b30166;hp=5894af561fc9126882111daff83772dec7da9ae2;hpb=2fef56731b0d38913967105495b96754e327efab;p=helm.git diff --git a/matita/matita/lib/re/re.ma b/matita/matita/lib/re/re.ma index 5894af561..8ba714b82 100644 --- a/matita/matita/lib/re/re.ma +++ b/matita/matita/lib/re/re.ma @@ -13,6 +13,10 @@ (**************************************************************************) include "re/lang.ma". +include "basics/core_notation/card_1.ma". + +(* The type re of regular expressions over an alphabet $S$ is the smallest +collection of objects generated by the following constructors: *) inductive re (S: DeqSet) : Type[0] ≝ z: re S @@ -34,6 +38,9 @@ interpretation "atom" 'ps a = (s ? a). notation "`∅" non associative with precedence 90 for @{ 'empty }. interpretation "empty" 'empty = (z ?). +(* The language sem{e} associated with the regular expression e is inductively +defined by the following function: *) + let rec in_l (S : DeqSet) (r : re S) on r : word S → Prop ≝ match r with [ z ⇒ ∅ @@ -50,8 +57,37 @@ interpretation "in_l mem" 'mem w l = (in_l ? l w). lemma rsem_star : ∀S.∀r: re S. \sem{r^*} = \sem{r}^*. // qed. +(* +Pointed Regular expressions + +We now introduce pointed regular expressions, that are the main tool we shall +use for the construction of the automaton. +A pointed regular expression is just a regular expression internally labelled +with some additional points. Intuitively, points mark the positions inside the +regular expression which have been reached after reading some prefix of +the input string, or better the positions where the processing of the remaining +string has to be started. Each pointed expression for $e$ represents a state of +the {\em deterministic} automaton associated with $e$; since we obviously have +only a finite number of possible labellings, the number of states of the automaton +is finite. + +Pointed regular expressions provide the tool for an algebraic revisitation of +McNaughton and Yamada's algorithm for position automata, making the proof of its +correctness, that is far from trivial, particularly clear and simple. In particular, +pointed expressions offer an appealing alternative to Brzozowski's derivatives, +avoiding their weakest point, namely the fact of being forced to quotient derivatives +w.r.t. a suitable notion of equivalence in order to get a finite number of states +(that is not essential for recognizing strings, but is crucial for comparing regular +expressions). + +Our main data structure is the notion of pointed item, that is meant whose purpose +is to encode a set of positions inside a regular expression. +The idea of formalizing pointers inside a data type by means of a labelled version +of the data type itself is probably one of the first, major lessons learned in the +formalization of the metatheory of programming languages. For our purposes, it is +enough to mark positions preceding individual characters, so we shall have two kinds +of characters •a (pp a) and a (ps a) according to the case a is pointed or not. *) -(* pointed items *) inductive pitem (S: DeqSet) : Type[0] ≝ pz: pitem S | pe: pitem S @@ -61,6 +97,12 @@ inductive pitem (S: DeqSet) : Type[0] ≝ | po: pitem S → pitem S → pitem S | pk: pitem S → pitem S. +(* A pointed regular expression (pre) is just a pointed item with an additional +boolean, that must be understood as the possibility to have a trailing point at +the end of the expression. As we shall see, pointed regular expressions can be +understood as states of a DFA, and the boolean indicates if +the state is final or not. *) + definition pre ≝ λS.pitem S × bool. interpretation "pitem star" 'star a = (pk ? a). @@ -73,6 +115,10 @@ interpretation "pitem ps" 'ps a = (ps ? a). interpretation "pitem epsilon" 'epsilon = (pe ?). interpretation "pitem empty" 'empty = (pz ?). +(* The carrier $|i|$ of an item i is the regular expression obtained from i by +removing all the points. Similarly, the carrier of a pointed regular expression +is the carrier of its item. *) + let rec forget (S: DeqSet) (l : pitem S) on l: re S ≝ match l with [ pz ⇒ `∅ @@ -83,8 +129,7 @@ let rec forget (S: DeqSet) (l : pitem S) on l: re S ≝ | po E1 E2 ⇒ (forget ? E1) + (forget ? E2) | pk E ⇒ (forget ? E)^* ]. -(* notation < "|term 19 e|" non associative with precedence 70 for @{'forget $e}.*) -interpretation "forget" 'norm a = (forget ? a). +interpretation "forget" 'card a = (forget ? a). lemma erase_dot : ∀S.∀e1,e2:pitem S. |e1 · e2| = c ? (|e1|) (|e2|). // qed. @@ -96,7 +141,14 @@ lemma erase_plus : ∀S.∀i1,i2:pitem S. lemma erase_star : ∀S.∀i:pitem S.|i^*| = |i|^*. // qed. -(* boolean equality *) +(* +Comparing items and pres + +Items and pres are very concrete datatypes: they can be effectively compared, +and enumerated. In particular, we can define a boolean equality beqitem and a proof +beqitem_true that it refects propositional equality, enriching the set (pitem S) +to a DeqSet. *) + let rec beqitem S (i1,i2: pitem S) on i1 ≝ match i1 with [ pz ⇒ match i2 with [ pz ⇒ true | _ ⇒ false] @@ -144,7 +196,11 @@ qed. definition DeqItem ≝ λS. mk_DeqSet (pitem S) (beqitem S) (beqitem_true S). - + +(* We also add a couple of unification hints to allow the type inference system +to look at (pitem S) as the carrier of a DeqSet, and at beqitem as if it was the +equality function of a DeqSet. *) + unification hint 0 ≔ S; X ≟ mk_DeqSet (pitem S) (beqitem S) (beqitem_true S) (* ---------------------------------------- *) ⊢ @@ -155,7 +211,12 @@ unification hint 0 ≔ S,i1,i2; (* ---------------------------------------- *) ⊢ beqitem S i1 i2 ≡ eqb X i1 i2. -(* semantics *) +(* +Semantics of pointed regular expressions + +The intuitive semantic of a point is to mark the position where +we should start reading the regular expression. The language associated +to a pre is the union of the languages associated with its points. *) let rec in_pl (S : DeqSet) (r : pitem S) on r : word S → Prop ≝ match r with @@ -176,6 +237,8 @@ definition in_prl ≝ λS : DeqSet.λp:pre S. interpretation "in_prl mem" 'mem w l = (in_prl ? l w). interpretation "in_prl" 'in_l E = (in_prl ? E). +(* The following, trivial lemmas are only meant for rewriting purposes. *) + lemma sem_pre_true : ∀S.∀i:pitem S. \sem{〈i,true〉} = \sem{i} ∪ {ϵ}. // qed. @@ -208,6 +271,14 @@ lemma sem_star_w : ∀S.∀i:pitem S.∀w. \sem{i^*} w = (∃w1,w2.w1 @ w2 = w ∧ \sem{i} w1 ∧ \sem{|i|}^* w2). // qed. +(* Below are a few, simple, semantic properties of items. In particular: +- not_epsilon_item : ∀S:DeqSet.∀i:pitem S. ¬ (\sem{i} ϵ). +- epsilon_pre : ∀S.∀e:pre S. (\sem{i} ϵ) ↔ (\snd e = true). +- minus_eps_item: ∀S.∀i:pitem S. \sem{i} ≐ \sem{i}-{[ ]}. +- minus_eps_pre: ∀S.∀e:pre S. \sem{\fst e} ≐ \sem{e}-{[ ]}. +The first property is proved by a simple induction on $i$; the other +results are easy corollaries. We need an auxiliary lemma first. *) + lemma append_eq_nil : ∀S.∀w1,w2:word S. w1 @ w2 = ϵ → w1 = ϵ. #S #w1 #w2 cases w1 // #a #tl normalize #H destruct qed. @@ -220,7 +291,6 @@ lemma not_epsilon_lp : ∀S:DeqSet.∀e:pitem S. ¬ (ϵ ∈ e). ] qed. -(* lemma 12 *) lemma epsilon_to_true : ∀S.∀e:pre S. ϵ ∈ e → \snd e = true. #S * #i #b cases b // normalize #H @False_ind /2/ qed. @@ -229,14 +299,14 @@ lemma true_to_epsilon : ∀S.∀e:pre S. \snd e = true → ϵ ∈ e. #S * #i #b #btrue normalize in btrue; >btrue %2 // qed. -lemma minus_eps_item: ∀S.∀i:pitem S. \sem{i} =1 \sem{i}-{[ ]}. +lemma minus_eps_item: ∀S.∀i:pitem S. \sem{i} ≐ \sem{i}-{[ ]}. #S #i #w % [#H whd % // normalize @(not_to_not … (not_epsilon_lp …i)) // |* // ] qed. -lemma minus_eps_pre: ∀S.∀e:pre S. \sem{\fst e} =1 \sem{e}-{[ ]}. +lemma minus_eps_pre: ∀S.∀e:pre S. \sem{\fst e} ≐ \sem{e}-{[ ]}. #S * #i * [>sem_pre_true normalize in ⊢ (??%?); #w % [/3/ | * * // #H1 #H2 @False_ind @(absurd …H1 H2)] @@ -244,29 +314,81 @@ lemma minus_eps_pre: ∀S.∀e:pre S. \sem{\fst e} =1 \sem{e}-{[ ]}. ] qed. +(* +Broadcasting points + +Intuitively, a regular expression e must be understood as a pointed expression with a single +point in front of it. Since however we only allow points before symbols, we must broadcast +this initial point inside e traversing all nullable subexpressions, that essentially corresponds +to the ϵ-closure operation on automata. We use the notation •(_) to denote such an operation; +its definition is the expected one: let us start discussing an example. + +Example +Let us broadcast a point inside (a + ϵ)(b*a + b)b. We start working in parallel on the +first occurrence of a (where the point stops), and on ϵ that gets traversed. We have hence +reached the end of a + ϵ and we must pursue broadcasting inside (b*a + b)b. Again, we work in +parallel on the two additive subterms b^*a and b; the first point is allowed to both enter the +star, and to traverse it, stopping in front of a; the second point just stops in front of b. +No point reached that end of b^*a + b hence no further propagation is possible. In conclusion: + •((a + ϵ)(b^*a + b)b) = 〈(•a + ϵ)((•b)^*•a + •b)b, false〉 +*) + +(* Broadcasting a point inside an item generates a pre, since the point could possibly reach +the end of the expression. +Broadcasting inside a i1+i2 amounts to broadcast in parallel inside i1 and i2. +If we define + 〈i1,b1〉 ⊕ 〈i2,b2〉 = 〈i1 + i2, b1 ∨ b2〉 +then, we just have •(i1+i2) = •(i1)⊕ •(i2). +*) + definition lo ≝ λS:DeqSet.λa,b:pre S.〈\fst a + \fst b,\snd a ∨ \snd b〉. -notation "a ⊕ b" left associative with precedence 60 for @{'oplus $a $b}. +notation "a ⊕ b" left associative with precedence 65 for @{'oplus $a $b}. interpretation "oplus" 'oplus a b = (lo ? a b). lemma lo_def: ∀S.∀i1,i2:pitem S.∀b1,b2. 〈i1,b1〉⊕〈i2,b2〉=〈i1+i2,b1∨b2〉. // qed. +(* +Concatenation is a bit more complex. In order to broadcast a point inside i1 · i2 +we should start broadcasting it inside i1 and then proceed into i2 if and only if a +point reached the end of i1. This suggests to define •(i1 · i2) as •(i1) ▹ i2, where +e ▹ i is a general operation of concatenation between a pre and an item, defined by +cases on the boolean in e: + + 〈i1,true〉 ▹ i2 = i1 ◃ •(i_2) + 〈i1,false〉 ▹ i2 = i1 · i2 + +In turn, ◃ says how to concatenate an item with a pre, that is however extremely simple: + + i1 ◃ 〈i1,b〉 = 〈i_1 · i2, b〉 + +Let us come to the formalized definitions: +*) + definition pre_concat_r ≝ λS:DeqSet.λi:pitem S.λe:pre S. match e with [ mk_Prod i1 b ⇒ 〈i · i1, b〉]. -notation "i ◃ e" left associative with precedence 60 for @{'lhd $i $e}. +notation "i ◃ e" left associative with precedence 65 for @{'lhd $i $e}. interpretation "pre_concat_r" 'lhd i e = (pre_concat_r ? i e). +(* The behaviour of ◃ is summarized by the following, easy lemma: *) + lemma eq_to_ex_eq: ∀S.∀A,B:word S → Prop. - A = B → A =1 B. + A = B → A ≐ B. #S #A #B #H >H /2/ qed. lemma sem_pre_concat_r : ∀S,i.∀e:pre S. - \sem{i ◃ e} =1 \sem{i} · \sem{|\fst e|} ∪ \sem{e}. + \sem{i ◃ e} ≐ \sem{i} · \sem{|\fst e|} ∪ \sem{e}. #S #i * #i1 #b1 cases b1 [2: @eq_to_ex_eq //] >sem_pre_true >sem_cat >sem_pre_true /2/ qed. - + +(* The definition of $•(-)$ (eclose) and ▹ (pre_concat_l) are mutually recursive. +In this situation, a viable alternative that is usually simpler to reason about, +is to abstract one of the two functions with respect to the other. In particular +we abstract pre_concat_l with respect to an input bcast function from items to +pres. *) + definition pre_concat_l ≝ λS:DeqSet.λbcast:∀S:DeqSet.pitem S → pre S.λe1:pre S.λi2:pitem S. match e1 with [ mk_Prod i1 b1 ⇒ match b1 with @@ -275,10 +397,12 @@ definition pre_concat_l ≝ λS:DeqSet.λbcast:∀S:DeqSet.pitem S → pre S.λe ] ]. -notation "a ▹ b" left associative with precedence 60 for @{'tril eclose $a $b}. +notation "a ▹ b" left associative with precedence 65 for @{'tril eclose $a $b}. interpretation "item-pre concat" 'tril op a b = (pre_concat_l ? op a b). -notation "•" non associative with precedence 60 for @{eclose ?}. +notation "•" non associative with precedence 65 for @{eclose ?}. + +(* We are ready to give the formal definition of the broadcasting operation. *) let rec eclose (S: DeqSet) (i: pitem S) on i : pre S ≝ match i with @@ -290,9 +414,11 @@ let rec eclose (S: DeqSet) (i: pitem S) on i : pre S ≝ | pc i1 i2 ⇒ •i1 ▹ i2 | pk i ⇒ 〈(\fst (•i))^*,true〉]. -notation "• x" non associative with precedence 60 for @{'eclose $x}. +notation "• x" non associative with precedence 65 for @{'eclose $x}. interpretation "eclose" 'eclose x = (eclose ? x). +(* Here are a few simple properties of ▹ and •(-) *) + lemma eclose_plus: ∀S:DeqSet.∀i1,i2:pitem S. •(i1 + i2) = •i1 ⊕ •i2. // qed. @@ -305,22 +431,6 @@ lemma eclose_star: ∀S:DeqSet.∀i:pitem S. •i^* = 〈(\fst(•i))^*,true〉. // qed. -definition lift ≝ λS.λf:pitem S →pre S.λe:pre S. - match e with - [ mk_Prod i b ⇒ 〈\fst (f i), \snd (f i) ∨ b〉]. - -definition preclose ≝ λS. lift S (eclose S). -interpretation "preclose" 'eclose x = (preclose ? x). - -(* theorem 16: 2 *) -lemma sem_oplus: ∀S:DeqSet.∀e1,e2:pre S. - \sem{e1 ⊕ e2} =1 \sem{e1} ∪ \sem{e2}. -#S * #i1 #b1 * #i2 #b2 #w % - [cases b1 cases b2 normalize /2/ * /3/ * /3/ - |cases b1 cases b2 normalize /2/ * /3/ * /3/ - ] -qed. - lemma odot_true : ∀S.∀i1,i2:pitem S. 〈i1,true〉 ▹ i2 = i1 ◃ (•i2). @@ -336,9 +446,18 @@ lemma odot_false: 〈i1,false〉 ▹ i2 = 〈i1 · i2, false〉. // qed. -lemma LcatE : ∀S.∀e1,e2:pitem S. - \sem{e1 · e2} = \sem{e1} · \sem{|e2|} ∪ \sem{e2}. -// qed. +(* The definition of •(-) (eclose) can then be lifted from items to pres +in the obvious way. *) + +definition lift ≝ λS.λf:pitem S →pre S.λe:pre S. + match e with + [ mk_Prod i b ⇒ 〈\fst (f i), \snd (f i) ∨ b〉]. + +definition preclose ≝ λS. lift S (eclose S). +interpretation "preclose" 'eclose x = (preclose ? x). + +(* Obviously, broadcasting does not change the carrier of the item, +as it is easily proved by structural induction. *) lemma erase_bull : ∀S.∀i:pitem S. |\fst (•i)| = |i|. #S #i elim i // @@ -350,16 +469,39 @@ lemma erase_bull : ∀S.∀i:pitem S. |\fst (•i)| = |i|. ] qed. -(* -lemma sem_eclose_star: ∀S:DeqSet.∀i:pitem S. - \sem{〈i^*,true〉} =1 \sem{〈i,false〉}·\sem{|i|}^* ∪ {ϵ}. -/2/ qed. -*) +(* We are now ready to state the main semantic properties of ⊕, ◃ and •(-): + +sem_oplus: \sem{e1 ⊕ e2} ≐ \sem{e1} ∪ \sem{e2} +sem_pcl: \sem{e1 ▹ i2} ≐ \sem{e1} · \sem{|i2|} ∪ \sem{i2} +sem_bullet \sem{•i} ≐ \sem{i} ∪ \sem{|i|} + +The proof of sem_oplus is straightforward. *) + +lemma sem_oplus: ∀S:DeqSet.∀e1,e2:pre S. + \sem{e1 ⊕ e2} ≐ \sem{e1} ∪ \sem{e2}. +#S * #i1 #b1 * #i2 #b2 #w % + [cases b1 cases b2 normalize /2/ * /3/ * /3/ + |cases b1 cases b2 normalize /2/ * /3/ * /3/ + ] +qed. + +(* For the others, we proceed as follow: we first prove the following +auxiliary lemma, that assumes sem_bullet: + +sem_pcl_aux: + \sem{•i2} ≐ \sem{i2} ∪ \sem{|i2|} → + \sem{e1 ▹ i2} ≐ \sem{e1} · \sem{|i2|} ∪ \sem{i2}. + +Then, using the previous result, we prove sem_bullet by induction +on i. Finally, sem_pcl_aux and sem_bullet give sem_pcl. *) + +lemma LcatE : ∀S.∀e1,e2:pitem S. + \sem{e1 · e2} = \sem{e1} · \sem{|e2|} ∪ \sem{e2}. +// qed. -(* theorem 16: 1 → 3 *) lemma odot_dot_aux : ∀S.∀e1:pre S.∀i2:pitem S. - \sem{•i2} =1 \sem{i2} ∪ \sem{|i2|} → - \sem{e1 ▹ i2} =1 \sem{e1} · \sem{|i2|} ∪ \sem{i2}. + \sem{•i2} ≐ \sem{i2} ∪ \sem{|i2|} → + \sem{e1 ▹ i2} ≐ \sem{e1} · \sem{|i2|} ∪ \sem{i2}. #S * #i1 #b1 #i2 cases b1 [2:#th >odot_false >sem_pre_false >sem_pre_false >sem_cat /2/ |#H >odot_true >sem_pre_true @(eqP_trans … (sem_pre_concat_r …)) @@ -370,7 +512,7 @@ lemma odot_dot_aux : ∀S.∀e1:pre S.∀i2:pitem S. qed. lemma minus_eps_pre_aux: ∀S.∀e:pre S.∀i:pitem S.∀A. - \sem{e} =1 \sem{i} ∪ A → \sem{\fst e} =1 \sem{i} ∪ (A - {[ ]}). + \sem{e} ≐ \sem{i} ∪ A → \sem{\fst e} ≐ \sem{i} ∪ (A - {[ ]}). #S #e #i #A #seme @eqP_trans [|@minus_eps_pre] @eqP_trans [||@eqP_union_r [|@eqP_sym @minus_eps_item]] @@ -378,21 +520,31 @@ lemma minus_eps_pre_aux: ∀S.∀e:pre S.∀i:pitem S.∀A. @eqP_substract_r // qed. -(* theorem 16: 1 *) -theorem sem_bull: ∀S:DeqSet. ∀i:pitem S. \sem{•i} =1 \sem{i} ∪ \sem{|i|}. +theorem sem_bull: ∀S:DeqSet. ∀i:pitem S. \sem{•i} ≐ \sem{i} ∪ \sem{|i|}. #S #e elim e [#w normalize % [/2/ | * //] |/2/ |#x normalize #w % [ /2/ | * [@False_ind | //]] |#x normalize #w % [ /2/ | * // ] - |#i1 #i2 #IH1 #IH2 >eclose_dot - @eqP_trans [|@odot_dot_aux //] >sem_cat + |#i1 #i2 #IH1 #IH2 + (* lhs = \sem{•(i1 ·i2)} *) + >eclose_dot + (* lhs =\sem{•(i1) ▹ i2)} *) + @eqP_trans [|@odot_dot_aux //] + (* lhs = \sem{•(i1)·\sem{|i2|}∪\sem{i2} *) @eqP_trans [|@eqP_union_r [|@eqP_trans [|@(cat_ext_l … IH1)] @distr_cat_r]] + (* lhs = \sem{i1}·\sem{|i2|}∪\sem{|i1|}·\sem{|i2|}∪\sem{i2} *) @eqP_trans [|@union_assoc] + (* lhs = \sem{i1}·\sem{|i2|}∪(\sem{|i1|}·\sem{|i2|}∪\sem{i2}) *) + (* Now we work on the rhs that is + rhs = \sem{i1·i2} ∪ \sem{|i1·i2|} *) + >sem_cat + (* rhs = \sem{i1}·\sem{|i2|} ∪ \sem{i2} ∪ \sem{|i1·i2|} *) @eqP_trans [||@eqP_sym @union_assoc] - @eqP_union_l // + (* rhs = \sem{i1}·\sem{|i2|}∪ (\sem{i2} ∪ \sem{|i1·i2|}) *) + @eqP_union_l @union_comm |#i1 #i2 #IH1 #IH2 >eclose_plus @eqP_trans [|@sem_oplus] >sem_plus >erase_plus @eqP_trans [|@(eqP_union_l … IH2)] @@ -409,7 +561,15 @@ theorem sem_bull: ∀S:DeqSet. ∀i:pitem S. \sem{•i} =1 \sem{i} ∪ \sem{|i| ] qed. -(* blank item *) +(* +Blank item + +As a corollary of theorem sem_bullet, given a regular expression e, we can easily +find an item with the same semantics of $e$: it is enough to get an item (blank e) +having e as carrier and no point, and then broadcast a point in it. The semantics of +(blank e) is obviously the empty language: from the point of view of the automaton, +it corresponds with the pit state. *) + let rec blank (S: DeqSet) (i: re S) on i :pitem S ≝ match i with [ z ⇒ `∅ @@ -423,7 +583,7 @@ lemma forget_blank: ∀S.∀e:re S.|blank S e| = e. #S #e elim e normalize // qed. -lemma sem_blank: ∀S.∀e:re S.\sem{blank S e} =1 ∅. +lemma sem_blank: ∀S.∀e:re S.\sem{blank S e} ≐ ∅. #S #e elim e [1,2:@eq_to_ex_eq // |#s @eq_to_ex_eq // @@ -440,13 +600,18 @@ lemma sem_blank: ∀S.∀e:re S.\sem{blank S e} =1 ∅. qed. theorem re_embedding: ∀S.∀e:re S. - \sem{•(blank S e)} =1 \sem{e}. + \sem{•(blank S e)} ≐ \sem{e}. #S #e @eqP_trans [|@sem_bull] >forget_blank @eqP_trans [|@eqP_union_r [|@sem_blank]] @eqP_trans [|@union_comm] @union_empty_r. qed. -(* lefted operations *) +(* +Lifted Operators + +Plus and bullet have been already lifted from items to pres. We can now +do a similar job for concatenation ⊙ and Kleene's star ⊛. *) + definition lifted_cat ≝ λS:DeqSet.λe:pre S. lift S (pre_concat_l S eclose e). @@ -469,6 +634,8 @@ lemma erase_odot:∀S.∀e1,e2:pre S. #S * #i1 * * #i2 #b2 // >odot_true_b // qed. +(* Let us come to the star operation: *) + definition lk ≝ λS:DeqSet.λe:pre S. match e with [ mk_Prod i1 b1 ⇒ @@ -496,7 +663,7 @@ lemma erase_ostar: ∀S.∀e:pre S. #S * #i * // qed. lemma sem_odot_true: ∀S:DeqSet.∀e1:pre S.∀i. - \sem{e1 ⊙ 〈i,true〉} =1 \sem{e1 ▹ i} ∪ { [ ] }. + \sem{e1 ⊙ 〈i,true〉} ≐ \sem{e1 ▹ i} ∪ { [ ] }. #S #e1 #i cut (e1 ⊙ 〈i,true〉 = 〈\fst (e1 ▹ i), \snd(e1 ▹ i) ∨ true〉) [//] #H >H cases (e1 ▹ i) #i1 #b1 cases b1 @@ -513,8 +680,11 @@ cut (e1 ⊙ 〈i,false〉 = 〈\fst (e1 ▹ i), \snd(e1 ▹ i) ∨ false〉) [// cases (e1 ▹ i) #i1 #b1 cases b1 #H @H qed. +(* We conclude this section with the proof of the main semantic properties +of ⊙ and ⊛. *) + lemma sem_odot: - ∀S.∀e1,e2: pre S. \sem{e1 ⊙ e2} =1 \sem{e1}· \sem{|\fst e2|} ∪ \sem{e2}. + ∀S.∀e1,e2: pre S. \sem{e1 ⊙ e2} ≐ \sem{e1}· \sem{|\fst e2|} ∪ \sem{e2}. #S #e1 * #i2 * [>sem_pre_true @eqP_trans [|@sem_odot_true] @@ -522,17 +692,28 @@ lemma sem_odot: |>sem_pre_false >eq_odot_false @odot_dot_aux // ] qed. - -(* theorem 16: 4 *) + theorem sem_ostar: ∀S.∀e:pre S. - \sem{e^⊛} =1 \sem{e} · \sem{|\fst e|}^*. + \sem{e^⊛} ≐ \sem{e} · \sem{|\fst e|}^*. #S * #i #b cases b - [>sem_pre_true >sem_pre_true >sem_star >erase_bull + [(* lhs = \sem{〈i,true〉^⊛} *) + >sem_pre_true (* >sem_pre_true *) + (* lhs = \sem{(\fst (•i))^*}∪{ϵ} *) + >sem_star >erase_bull + (* lhs = \sem{\fst (•i)}·(\sem{|i|)^*∪{ϵ} *) @eqP_trans [|@eqP_union_r[|@cat_ext_l [|@minus_eps_pre_aux //]]] + (* lhs = (\sem{i}∪(\sem{|i|}-{ϵ})·(\sem{|i|)^*∪{ϵ} *) @eqP_trans [|@eqP_union_r [|@distr_cat_r]] + (* lhs = (\sem{i}·(\sem{|i|)^*∪(\sem{|i|}-{ϵ})·(\sem{|i|)^*∪{ϵ} *) + @eqP_trans [|@union_assoc] + (* lhs = (\sem{i}·(\sem{|i|)^*∪((\sem{|i|}-{ϵ})·(\sem{|i|)^*∪{ϵ}) *) + @eqP_trans [|@eqP_union_l[|@eqP_sym @star_fix_eps]] + (* lhs = (\sem{i}·(\sem{|i|)^*∪(\sem{|i|)^* *) + (* now we work on the right hand side, that is + rhs = \sem{〈i,true〉}·(\sem{|i|}^* *) @eqP_trans [||@eqP_sym @distr_cat_r] - @eqP_trans [|@union_assoc] @eqP_union_l - @eqP_trans [||@eqP_sym @epsilon_cat_l] @eqP_sym @star_fix_eps + (* rhs = (\sem{i}·(\sem{|i|)^*∪{ϵ}·(\sem{|i|)^* *) + @eqP_union_l @eqP_sym @epsilon_cat_l |>sem_pre_false >sem_pre_false >sem_star /2/ ] qed.