X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fturing%2Fif_machine.ma;h=3c6d686ea7b4f8359e53d2887df354917f32462c;hb=d9a1ff8259a7882caa0ffd27282838c00a34cab5;hp=7b73d006d7a827d78743b81d633eb9f138e052ff;hpb=1ed95da08b483c7f7e69fc645bee455572cad031;p=helm.git diff --git a/matita/matita/lib/turing/if_machine.ma b/matita/matita/lib/turing/if_machine.ma index 7b73d006d..3c6d686ea 100644 --- a/matita/matita/lib/turing/if_machine.ma +++ b/matita/matita/lib/turing/if_machine.ma @@ -11,21 +11,48 @@ include "turing/mono.ma". +(**************************** single final machine ****************************) + +definition single_finalTM ≝ + λsig.λM:TM sig.seq ? M (nop ?). + +lemma sem_single_final: ∀sig.∀M: TM sig.∀R. + M ⊨ R → single_finalTM sig M ⊨ R. +#sig #M #R #HR #intape +cases (sem_seq ????? HR (sem_nop …) intape) +#k * #outc * #Hloop * #ta * #Hta whd in ⊢ (%→?); #Houtc +@(ex_intro ?? k) @(ex_intro ?? outc) % [ @Hloop | >Houtc // ] +qed. + +lemma single_final: ∀sig.∀M: TM sig.∀q1,q2. + halt ? (single_finalTM sig M) q1 = true + → halt ? (single_finalTM sig M) q2 = true → q1=q2. +#sig #M * + [#q1M #q2 whd in match (halt ???); #H destruct + |#q1nop * + [#q2M #_ whd in match (halt ???); #H destruct + |#q2nop #_ #_ @eq_f normalize @nop_single_state + ] + ] +qed. + +(******************************** if machine **********************************) + definition if_trans ≝ λsig. λM1,M2,M3 : TM sig. λq:states sig M1. λp. let 〈s,a〉 ≝ p in match s with [ inl s1 ⇒ if halt sig M1 s1 then - if s1==q then 〈inr … (inl … (start sig M2)), None ?〉 - else 〈inr … (inr … (start sig M3)), None ?〉 - else let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in - 〈inl … news1,m〉 + if s1==q then 〈inr … (inl … (start sig M2)), None ?,N〉 + else 〈inr … (inr … (start sig M3)), None ?,N〉 + else let 〈news1,newa,m〉 ≝ trans sig M1 〈s1,a〉 in + 〈inl … news1,newa,m〉 | inr s' ⇒ match s' with - [ inl s2 ⇒ let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in - 〈inr … (inl … news2),m〉 - | inr s3 ⇒ let 〈news3,m〉 ≝ trans sig M3 〈s3,a〉 in - 〈inr … (inr … news3),m〉 + [ inl s2 ⇒ let 〈news2,newa,m〉 ≝ trans sig M2 〈s2,a〉 in + 〈inr … (inl … news2),newa,m〉 + | inr s3 ⇒ let 〈news3,newa,m〉 ≝ trans sig M3 〈s3,a〉 in + 〈inr … (inr … news3),newa,m〉 ] ]. @@ -40,408 +67,399 @@ definition ifTM ≝ λsig. λcondM,thenM,elseM : TM sig. | inr s' ⇒ match s' with [ inl s2 ⇒ halt sig thenM s2 | inr s3 ⇒ halt sig elseM s3 ]]). - -axiom daemon : ∀X:Prop.X. -theorem sem_if: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,acc. - accRealize sig M1 acc Rtrue Rfalse → Realize sig M2 R2 → Realize sig M3 R3 → - Realize sig (ifTM sig M1 M2 M3 acc) (λt1,t2. (Rtrue ∘ R2) t1 t2 ∨ (Rfalse ∘ R3) t1 t2). -#sig #M1 #M2 #M3 #Rtrue #Rfalse #R2 #R3 #acc #HaccR #HR2 #HR3 #t -cases (HaccR t) #k1 * #outc1 * * #Hloop1 #HMtrue #HMfalse -cases (true_or_false (cstate ?? outc1 == acc)) #Hacc - [cases (HR2 (ctape sig ? outc1)) #k2 * #outc2 * #Hloop2 #HM2 - @(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … (lift_confL … outc2))) - % - [@(loop_split ??????????? - (loop_lift ??? - (lift_confL sig (states ? M1) (FinSum (states ? M2) (states ? M3))) - (step sig M1) (step sig (ifTM sig M1 M2 M3 acc)) - (λc.halt sig M1 (cstate … c)) - (λc.halt_liftL ?? (halt sig M1) (cstate … c)) - … Hloop1)) - [* * - [ #sl #tl whd in ⊢ (??%? → ?); #Hl % - | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] - || #c0 #Hhalt @daemon (* (trans_liftL_true sig M1 M2 ??) - [ whd in ⊢ (??%?); whd in ⊢ (???%); - @config_eq whd in ⊢ (???%); // - | @(loop_Some ?????? Hloop10) ] - ||4:cases outc1 #s1 #t1 % - |5: - - @(loop_liftR … Hloop2) - |whd in ⊢ (??(???%)?);whd in ⊢ (??%?); - generalize in match Hloop1; cases outc1 #sc1 #tc1 #Hloop10 - >(trans_liftL_true sig M1 M2 ??) - [ whd in ⊢ (??%?); whd in ⊢ (???%); - @config_eq // - | @(loop_Some ?????? Hloop10) ] - ] -| @(ex_intro … (ctape ? (seq sig M1 M2) (lift_confL … outc1))) - % // -] +(****************************** lifting lemmas ********************************) +lemma trans_if_liftM1 : ∀sig,M1,M2,M3,acc,s,a,news,newa,move. + halt ? M1 s = false → + trans sig M1 〈s,a〉 = 〈news,newa,move〉 → + trans sig (ifTM sig M1 M2 M3 acc) 〈inl … s,a〉 = 〈inl … news,newa,move〉. +#sig * #Q1 #T1 #init1 #halt1 #M2 #M3 #acc #s #a #news #newa #move +#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % qed. -(* We do not distinuish an input tape *) - -record TM (sig:FinSet): Type[1] ≝ -{ states : FinSet; - trans : states × (option sig) → states × (option (sig × move)); - start: states; - halt : states → bool -}. -record config (sig:FinSet) (M:TM sig): Type[0] ≝ -{ cstate : states sig M; - ctape: tape sig -}. - -definition option_hd ≝ λA.λl:list A. - match l with - [nil ⇒ None ? - |cons a _ ⇒ Some ? a - ]. - -definition tape_move ≝ λsig.λt: tape sig.λm:option (sig × move). - match m with - [ None ⇒ t - | Some m1 ⇒ - match \snd m1 with - [ R ⇒ mk_tape sig ((\fst m1)::(left ? t)) (tail ? (right ? t)) - | L ⇒ mk_tape sig (tail ? (left ? t)) ((\fst m1)::(right ? t)) - ] - ]. - -definition step ≝ λsig.λM:TM sig.λc:config sig M. - let current_char ≝ option_hd ? (right ? (ctape ?? c)) in - let 〈news,mv〉 ≝ trans sig M 〈cstate ?? c,current_char〉 in - mk_config ?? news (tape_move sig (ctape ?? c) mv). - -let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ - match n with - [ O ⇒ None ? - | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) - ]. - -lemma loop_incr : ∀A,f,p,k1,k2,a1,a2. - loop A k1 f p a1 = Some ? a2 → - loop A (k2+k1) f p a1 = Some ? a2. -#A #f #p #k1 #k2 #a1 #a2 generalize in match a1; elim k1 -[normalize #a0 #Hfalse destruct -|#k1' #IH #a0 Hpa0 whd in ⊢ (??%? → ??%?); // @IH -] +lemma trans_if_liftM2 : ∀sig,M1,M2,M3,acc,s,a,news,newa,move. + halt ? M2 s = false → + trans sig M2 〈s,a〉 = 〈news,newa,move〉 → + trans sig (ifTM sig M1 M2 M3 acc) 〈inr … (inl … s),a〉 = 〈inr… (inl … news),newa,move〉. +#sig #M1 * #Q2 #T2 #init2 #halt2 #M3 #acc #s #a #news #newa #move +#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % qed. -lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) → - ∀k1,k2,a1,a2,a3,a4. - loop A k1 f p a1 = Some ? a2 → - f a2 = a3 → q a2 = false → - loop A k2 f q a3 = Some ? a4 → - loop A (k1+k2) f q a1 = Some ? a4. -#Sig #f #p #q #Hpq #k1 elim k1 - [normalize #k2 #a1 #a2 #a3 #a4 #H destruct - |#k1' #Hind #k2 #a1 #a2 #a3 #a4 normalize in ⊢ (%→?); - cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?); - [#eqa1a2 destruct #eqa2a3 #Hqa2 #H - whd in ⊢ (??(??%???)?); >plus_n_Sm @loop_incr - whd in ⊢ (??%?); >Hqa2 >eqa2a3 @H - |normalize >(Hpq … pa1) normalize - #H1 #H2 #H3 @(Hind … H2) // - ] - ] +lemma trans_if_liftM3 : ∀sig,M1,M2,M3,acc,s,a,news,newa,move. + halt ? M3 s = false → + trans sig M3 〈s,a〉 = 〈news,newa,move〉 → + trans sig (ifTM sig M1 M2 M3 acc) 〈inr … (inr … s),a〉 = 〈inr… (inr … news),newa,move〉. +#sig #M1 * #Q2 #T2 #init2 #halt2 #M3 #acc #s #a #news #newa #move +#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % qed. -(* -lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) → - ∀k1,k2,a1,a2,a3. - loop A k1 f p a1 = Some ? a2 → - loop A k2 f q a2 = Some ? a3 → - loop A (k1+k2) f q a1 = Some ? a3. -#Sig #f #p #q #Hpq #k1 elim k1 - [normalize #k2 #a1 #a2 #a3 #H destruct - |#k1' #Hind #k2 #a1 #a2 #a3 normalize in ⊢ (%→?→?); - cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?); - [#eqa1a2 destruct #H @loop_incr // - |normalize >(Hpq … pa1) normalize - #H1 #H2 @(Hind … H2) // - ] - ] +lemma step_if_liftM1 : ∀sig,M1,M2,M3,acc,c0. + halt ? M1 (cstate ?? c0) = false → + step sig (ifTM sig M1 M2 M3 acc) (lift_confL sig (states ? M1) ? c0) = + lift_confL sig (states ? M1) ? (step sig M1 c0). +#sig #M1 #M2 #M3 #acc * #s #t + lapply (refl ? (trans ?? 〈s,current sig t〉)) + cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %); + * #s0 #a0 #m0 cases t + [ #Heq #Hhalt + | 2,3: #s1 #l1 #Heq #Hhalt + |#ls #s1 #rs #Heq #Hhalt ] + whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_if_liftM1 … Hhalt Heq) // qed. -*) - -definition initc ≝ λsig.λM:TM sig.λt. - mk_config sig M (start sig M) t. - -definition Realize ≝ λsig.λM:TM sig.λR:relation (tape sig). -∀t.∃i.∃outc. - loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) (initc sig M t) = Some ? outc ∧ - R t (ctape ?? outc). - -(* Compositions *) -definition seq_trans ≝ λsig. λM1,M2 : TM sig. -λp. let 〈s,a〉 ≝ p in - match s with - [ inl s1 ⇒ - if halt sig M1 s1 then 〈inr … (start sig M2), None ?〉 - else - let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in - 〈inl … news1,m〉 - | inr s2 ⇒ - let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in - 〈inr … news2,m〉 - ]. - -definition seq ≝ λsig. λM1,M2 : TM sig. - mk_TM sig - (FinSum (states sig M1) (states sig M2)) - (seq_trans sig M1 M2) - (inl … (start sig M1)) - (λs.match s with - [ inl _ ⇒ false | inr s2 ⇒ halt sig M2 s2]). - -definition Rcomp ≝ λA.λR1,R2:relation A.λa1,a2. - ∃am.R1 a1 am ∧ R2 am a2. - -(* -definition injectRl ≝ λsig.λM1.λM2.λR. - λc1,c2. ∃c11,c12. - inl … (cstate sig M1 c11) = cstate sig (seq sig M1 M2) c1 ∧ - inl … (cstate sig M1 c12) = cstate sig (seq sig M1 M2) c2 ∧ - ctape sig M1 c11 = ctape sig (seq sig M1 M2) c1 ∧ - ctape sig M1 c12 = ctape sig (seq sig M1 M2) c2 ∧ - R c11 c12. - -definition injectRr ≝ λsig.λM1.λM2.λR. - λc1,c2. ∃c21,c22. - inr … (cstate sig M2 c21) = cstate sig (seq sig M1 M2) c1 ∧ - inr … (cstate sig M2 c22) = cstate sig (seq sig M1 M2) c2 ∧ - ctape sig M2 c21 = ctape sig (seq sig M1 M2) c1 ∧ - ctape sig M2 c22 = ctape sig (seq sig M1 M2) c2 ∧ - R c21 c22. - -definition Rlink ≝ λsig.λM1,M2.λc1,c2. - ctape sig (seq sig M1 M2) c1 = ctape sig (seq sig M1 M2) c2 ∧ - cstate sig (seq sig M1 M2) c1 = inl … (halt sig M1) ∧ - cstate sig (seq sig M1 M2) c2 = inr … (start sig M2). *) - -interpretation "relation composition" 'compose R1 R2 = (Rcomp ? R1 R2). - -definition lift_confL ≝ - λsig,M1,M2,c.match c with - [ mk_config s t ⇒ mk_config ? (seq sig M1 M2) (inl … s) t ]. -definition lift_confR ≝ - λsig,M1,M2,c.match c with - [ mk_config s t ⇒ mk_config ? (seq sig M1 M2) (inr … s) t ]. - -definition halt_liftL ≝ - λsig.λM1,M2:TM sig.λs:FinSum (states ? M1) (states ? M2). - match s with - [ inl s1 ⇒ halt sig M1 s1 - | inr _ ⇒ true ]. (* should be vacuous in all cases we use halt_liftL *) - -definition halt_liftR ≝ - λsig.λM1,M2:TM sig.λs:FinSum (states ? M1) (states ? M2). - match s with - [ inl _ ⇒ false - | inr s2 ⇒ halt sig M2 s2 ]. - -lemma p_halt_liftL : ∀sig,M1,M2,c. - halt sig M1 (cstate … c) = - halt_liftL sig M1 M2 (cstate … (lift_confL … c)). -#sig #M1 #M2 #c cases c #s #t % +lemma step_if_liftM2 : ∀sig,M1,M2,M3,acc,c0. + halt ? M2 (cstate ?? c0) = false → + step sig (ifTM sig M1 M2 M3 acc) (lift_confR sig ?? (lift_confL sig ?? c0)) = + lift_confR sig ?? (lift_confL sig ?? (step sig M2 c0)). +#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 #M3 #acc * #s #t + lapply (refl ? (trans ?? 〈s,current sig t〉)) + cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %); + * #s0 #a0 #m0 cases t + [ #Heq #Hhalt + | 2,3: #s1 #l1 #Heq #Hhalt + |#ls #s1 #rs #Heq #Hhalt ] + whd in match (step ? M2 ?); >Heq whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_if_liftM2 … Hhalt Heq) // qed. -lemma trans_liftL : ∀sig,M1,M2,s,a,news,move. - halt ? M1 s = false → - trans sig M1 〈s,a〉 = 〈news,move〉 → - trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inl … news,move〉. -#sig (*#M1*) * #Q1 #T1 #init1 #halt1 #M2 #s #a #news #move -#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % +lemma step_if_liftM3 : ∀sig,M1,M2,M3,acc,c0. + halt ? M3 (cstate ?? c0) = false → + step sig (ifTM sig M1 M2 M3 acc) (lift_confR sig ?? (lift_confR sig ?? c0)) = + lift_confR sig ?? (lift_confR sig ?? (step sig M3 c0)). +#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 #M3 #acc * #s #t + lapply (refl ? (trans ?? 〈s,current sig t〉)) + cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %); + * #s0 #a0 #m0 cases t + [ #Heq #Hhalt + | 2,3: #s1 #l1 #Heq #Hhalt + |#ls #s1 #rs #Heq #Hhalt ] + whd in match (step ? M3 ?); >Heq whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_if_liftM3 … Hhalt Heq) // qed. -lemma config_eq : - ∀sig,M,c1,c2. - cstate sig M c1 = cstate sig M c2 → - ctape sig M c1 = ctape sig M c2 → c1 = c2. -#sig #M1 * #s1 #t1 * #s2 #t2 // +lemma trans_if_M1true_acc : ∀sig,M1,M2,M3,acc,s,a. + halt ? M1 s = true → s==acc = true → + trans sig (ifTM sig M1 M2 M3 acc) 〈inl … s,a〉 = 〈inr … (inl … (start ? M2)),None ?,N〉. +#sig #M1 #M2 #M3 #acc #s #a #Hhalt #Hacc whd in ⊢ (??%?); >Hhalt >Hacc % qed. -lemma step_lift_confL : ∀sig,M1,M2,c0. - halt ? M1 (cstate ?? c0) = false → - step sig (seq sig M1 M2) (lift_confL sig M1 M2 c0) = - lift_confL sig M1 M2 (step sig M1 c0). -#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s * #lt -#rs #Hhalt -whd in ⊢ (???(????%));whd in ⊢ (???%); -lapply (refl ? (trans ?? 〈s,option_hd sig rs〉)) -cases (trans ?? 〈s,option_hd sig rs〉) in ⊢ (???% → %); -#s0 #m0 #Heq whd in ⊢ (???%); -whd in ⊢ (??(???%)?); whd in ⊢ (??%?); ->(trans_liftL … Heq) -[% | //] +lemma trans_if_M1true_notacc : ∀sig,M1,M2,M3,acc,s,a. + halt ? M1 s = true → s==acc = false → + trans sig (ifTM sig M1 M2 M3 acc) 〈inl … s,a〉 = 〈inr … (inr … (start ? M3)),None ?,N〉. +#sig #M1 #M2 #M3 #acc #s #a #Hhalt #Hacc whd in ⊢ (??%?); >Hhalt >Hacc % qed. -lemma loop_liftL : ∀sig,k,M1,M2,c1,c2. - loop ? k (step sig M1) (λc.halt sig M1 (cstate ?? c)) c1 = Some ? c2 → - loop ? k (step sig (seq sig M1 M2)) - (λc.halt_liftL sig M1 M2 (cstate ?? c)) (lift_confL … c1) = - Some ? (lift_confL … c2). -#sig #k #M1 #M2 #c1 #c2 generalize in match c1; -elim k -[#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) -|#k0 #IH #c0 whd in ⊢ (??%? → ??%?); - lapply (refl ? (halt ?? (cstate sig M1 c0))) - cases (halt ?? (cstate sig M1 c0)) in ⊢ (???% → ?); #Hc0 >Hc0 - [ >(?: halt_liftL ??? (cstate sig (seq ? M1 M2) (lift_confL … c0)) = true) - [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % - | // ] - | >(?: halt_liftL ??? (cstate sig (seq ? M1 M2) (lift_confL … c0)) = false) - [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f - @step_lift_confL // - | // ] +(******************************** semantics ***********************************) +lemma sem_if: ∀sig.∀M1,M2,M3:TM sig.∀Rtrue,Rfalse,R2,R3,acc. + M1 ⊨ [acc: Rtrue,Rfalse] → M2 ⊨ R2 → M3 ⊨ R3 → + ifTM sig M1 M2 M3 acc ⊨ (Rtrue ∘ R2) ∪ (Rfalse ∘ R3). +#sig #M1 #M2 #M3 #Rtrue #Rfalse #R2 #R3 #acc #HaccR #HR2 #HR3 #t +cases (HaccR t) #k1 * #outc1 * * #Hloop1 #HMtrue #HMfalse +cases (true_or_false (cstate ?? outc1 == acc)) #Hacc + [cases (HR2 (ctape sig ? outc1)) #k2 * #outc2 * #Hloop2 #HM2 + @(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … (lift_confL … outc2))) % + [@(loop_merge ????????? + (mk_config ? (FinSum (states sig M1) (FinSum (states sig M2) (states sig M3))) + (inr (states sig M1) ? (inl (states sig M2) (states sig M3) (start sig M2))) (ctape ?? outc1) ) + ? + (loop_lift ??? + (lift_confL sig (states ? M1) (FinSum (states ? M2) (states ? M3))) + (step sig M1) (step sig (ifTM sig M1 M2 M3 acc)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) + … Hloop1)) + [* * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + |#c0 #Hhalt >(step_if_liftM1 … Hhalt) // + |#x (config_expand ?? outc1); + whd in match (lift_confL ????); + >(trans_if_M1true_acc … Hacc) + [% | @(loop_Some ?????? Hloop1)] + |cases outc1 #s1 #t1 % + |@(loop_lift ??? + (λc.(lift_confR … (lift_confL sig (states ? M2) (states ? M3) c))) + … Hloop2) + [ * #s2 #t2 % + | #c0 #Hhalt >(step_if_liftM2 … Hhalt) // ] + ] + |%1 @(ex_intro … (ctape ?? outc1)) % + [@HMtrue @(\P Hacc) | >(config_expand ?? outc2) @HM2 ] + ] + |cases (HR3 (ctape sig ? outc1)) #k2 * #outc2 * #Hloop2 #HM3 + @(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … (lift_confR … outc2))) % + [@(loop_merge ????????? + (mk_config ? (FinSum (states sig M1) (FinSum (states sig M2) (states sig M3))) + (inr (states sig M1) ? (inr (states sig M2) (states sig M3) (start sig M3))) (ctape ?? outc1) ) + ? + (loop_lift ??? + (lift_confL sig (states ? M1) (FinSum (states ? M2) (states ? M3))) + (step sig M1) (step sig (ifTM sig M1 M2 M3 acc)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) + … Hloop1)) + [* * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + |#c0 #Hhalt >(step_if_liftM1 … Hhalt) // + |#x (config_expand ?? outc1); + whd in match (lift_confL ????); + >(trans_if_M1true_notacc … Hacc) + [% | @(loop_Some ?????? Hloop1)] + |cases outc1 #s1 #t1 % + |@(loop_lift ??? + (λc.(lift_confR … (lift_confR sig (states ? M2) (states ? M3) c))) + … Hloop2) + [ * #s2 #t2 % + | #c0 #Hhalt >(step_if_liftM3 … Hhalt) // ] + ] + |%2 @(ex_intro … (ctape ?? outc1)) % + [@HMfalse @(\Pf Hacc) | >(config_expand ?? outc2) @HM3 ] + ] + ] qed. -STOP! - -lemma loop_liftR : ∀sig,k,M1,M2,c1,c2. - loop ? k (step sig M2) (λc.halt sig M2 (cstate ?? c)) c1 = Some ? c2 → - loop ? k (step sig (seq sig M1 M2)) - (λc.halt sig (seq sig M1 M2) (cstate ?? c)) (lift_confR … c1) = - Some ? (lift_confR … c2). -#sig #k #M1 #M2 #c1 #c2 -elim k -[normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) -|#k0 #IH whd in ⊢ (??%? → ??%?); - lapply (refl ? (halt ?? (cstate sig M2 c1))) - cases (halt ?? (cstate sig M2 c1)) in ⊢ (???% → ?); #Hc0 >Hc0 - [ >(?: halt ?? (cstate sig (seq ? M1 M2) (lift_confR … c1)) = true) - [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) - | (* ... *) ] - | >(?: halt ?? (cstate sig (seq ? M1 M2) (lift_confR … c1)) = false) - [whd in ⊢ (??%? → ??%?); #Hc2 Hhalt % +(* weak +lemma sem_if_app: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,R4,acc. + accRealize sig M1 acc Rtrue Rfalse → M2 ⊨ R2 → M3 ⊨ R3 → + (∀t1,t2,t3. (Rtrue t1 t3 → R2 t3 t2) ∨ (Rfalse t1 t3 → R3 t3 t2) → R4 t1 t2) → + ifTM sig M1 M2 M3 acc ⊨ R4. +#sig #M1 #M2 #M3 #Rtrue #Rfalse #R2 #R3 #R4 #acc +#HRacc #HRtrue #HRfalse #Hsub +#t cases (sem_if … HRacc HRtrue HRfalse t) +#k * #outc * #Hloop #Houtc @(ex_intro … k) @(ex_intro … outc) +% [@Hloop] cases Houtc + [* #t3 * #Hleft #Hright @(Hsub … t3) %1 /2/ + |* #t3 * #Hleft #Hright @(Hsub … t3) %2 /2/ ] qed. +*) -lemma eq_ctape_lift_conf_L : ∀sig,M1,M2,outc. - ctape sig (seq sig M1 M2) (lift_confL … outc) = ctape … outc. -#sig #M1 #M2 #outc cases outc #s #t % +(* we can probably use acc_sem_if to prove sem_if *) +(* for sure we can use acc_sem_if_guarded to prove acc_sem_if *) +lemma acc_sem_if: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,acc. + M1 ⊨ [acc: Rtrue, Rfalse] → M2 ⊨ R2 → M3 ⊨ R3 → + ifTM sig M1 (single_finalTM … M2) M3 acc ⊨ + [inr … (inl … (inr … start_nop)): Rtrue ∘ R2, Rfalse ∘ R3]. +#sig #M1 #M2 #M3 #Rtrue #Rfalse #R2 #R3 #acc #HaccR #HR2 #HR3 #t +cases (HaccR t) #k1 * #outc1 * * #Hloop1 #HMtrue #HMfalse +cases (true_or_false (cstate ?? outc1 == acc)) #Hacc + [lapply (sem_single_final … HR2) -HR2 #HR2 + cases (HR2 (ctape sig ? outc1)) #k2 * #outc2 * #Hloop2 #HM2 + @(ex_intro … (k1+k2)) + @(ex_intro … (lift_confR … (lift_confL … outc2))) % + [% + [@(loop_merge ????????? + (mk_config ? (states sig (ifTM sig M1 (single_finalTM … M2) M3 acc)) + (inr (states sig M1) ? (inl ? (states sig M3) (start sig (single_finalTM sig M2)))) (ctape ?? outc1) ) + ? + (loop_lift ??? + (lift_confL sig (states ? M1) (FinSum (states ? (single_finalTM … M2)) (states ? M3))) + (step sig M1) (step sig (ifTM sig M1 (single_finalTM ? M2) M3 acc)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) + … Hloop1)) + [* * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + |#c0 #Hhalt >(step_if_liftM1 … Hhalt) // + |#x (config_expand ?? outc1); + whd in match (lift_confL ????); + >(trans_if_M1true_acc … Hacc) + [% | @(loop_Some ?????? Hloop1)] + |cases outc1 #s1 #t1 % + |@(loop_lift ??? + (λc.(lift_confR … (lift_confL sig (states ? (single_finalTM ? M2)) (states ? M3) c))) + … Hloop2) + [ * #s2 #t2 % + | #c0 #Hhalt >(step_if_liftM2 … Hhalt) // ] + ] + |#_ @(ex_intro … (ctape ?? outc1)) % + [@HMtrue @(\P Hacc) | >(config_expand ?? outc2) @HM2 ] + ] + |>(config_expand ?? outc2) whd in match (lift_confR ????); + * #H @False_ind @H @eq_f @eq_f >(config_expand ?? outc2) + @single_final // @(loop_Some ?????? Hloop2) + ] + |cases (HR3 (ctape sig ? outc1)) #k2 * #outc2 * #Hloop2 #HM3 + @(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … (lift_confR … outc2))) % + [% + [@(loop_merge ????????? + (mk_config ? (states sig (ifTM sig M1 (single_finalTM … M2) M3 acc)) + (inr (states sig M1) ? (inr (states sig (single_finalTM ? M2)) ? (start sig M3))) (ctape ?? outc1) ) + ? + (loop_lift ??? + (lift_confL sig (states ? M1) (FinSum (states ? (single_finalTM … M2)) (states ? M3))) + (step sig M1) (step sig (ifTM sig M1 (single_finalTM ? M2) M3 acc)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) + … Hloop1)) + [* * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + |#c0 #Hhalt >(step_if_liftM1 … Hhalt) // + |#x (config_expand ?? outc1); + whd in match (lift_confL ????); + >(trans_if_M1true_notacc … Hacc) + [% | @(loop_Some ?????? Hloop1)] + |cases outc1 #s1 #t1 % + |@(loop_lift ??? + (λc.(lift_confR … (lift_confR sig (states ? (single_finalTM ? M2)) (states ? M3) c))) + … Hloop2) + [ * #s2 #t2 % + | #c0 #Hhalt >(step_if_liftM3 … Hhalt) // ] + ] + |>(config_expand ?? outc2) whd in match (lift_confR ????); + #H destruct (H) + ] + |#_ @(ex_intro … (ctape ?? outc1)) % + [@HMfalse @(\Pf Hacc) | >(config_expand ?? outc2) @HM3 ] + ] + ] qed. - -lemma eq_ctape_lift_conf_R : ∀sig,M1,M2,outc. - ctape sig (seq sig M1 M2) (lift_confR … outc) = ctape … outc. -#sig #M1 #M2 #outc cases outc #s #t % + +lemma acc_sem_if_app: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,R4,R5,acc. + M1 ⊨ [acc: Rtrue, Rfalse] → M2 ⊨ R2 → M3 ⊨ R3 → + (∀t1,t2,t3. Rtrue t1 t3 → R2 t3 t2 → R4 t1 t2) → + (∀t1,t2,t3. Rfalse t1 t3 → R3 t3 t2 → R5 t1 t2) → + ifTM sig M1 (single_finalTM … M2) M3 acc ⊨ + [inr … (inl … (inr … start_nop)): R4, R5]. +#sig #M1 #M2 #M3 #Rtrue #Rfalse #R2 #R3 #R4 #R5 #acc +#HRacc #HRtrue #HRfalse #Hsub1 #Hsub2 +#t cases (acc_sem_if … HRacc HRtrue HRfalse t) +#k * #outc * * #Hloop #Houtc1 #Houtc2 @(ex_intro … k) @(ex_intro … outc) +% [% [@Hloop + |#H cases (Houtc1 H) #t3 * #Hleft #Hright @Hsub1 // ] + |#H cases (Houtc2 H) #t3 * #Hleft #Hright @Hsub2 // ] qed. -theorem sem_seq: ∀sig,M1,M2,R1,R2. - Realize sig M1 R1 → Realize sig M2 R2 → - Realize sig (seq sig M1 M2) (R1 ∘ R2). -#sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t -cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 -cases (HR2 (ctape sig M1 outc1)) #k2 * #outc2 * #Hloop2 #HM2 -@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) -% -[@(loop_split ??????????? (loop_liftL … Hloop1)) - [* * - [ #sl #tl whd in ⊢ (??%? → ?); #Hl % - | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] - ||4:cases outc1 #s1 #t1 % - |5:@(loop_liftR … Hloop2) - |whd in ⊢ (??(???%)?);whd in ⊢ (??%?); - generalize in match Hloop1; cases outc1 #sc1 #tc1 #Hloop10 - >(trans_liftL_true sig M1 M2 ??) - [ whd in ⊢ (??%?); whd in ⊢ (???%); - @config_eq // - | @(loop_Some ?????? Hloop10) ] - ] -| @(ex_intro … (ctape ? (seq sig M1 M2) (lift_confL … outc1))) - % // -] +lemma sem_single_final_guarded: ∀sig.∀M: TM sig.∀Pre,R. + GRealize sig M Pre R → GRealize sig (single_finalTM sig M) Pre R. +#sig #M #Pre #R #HR #intape #HPre +cases (sem_seq_guarded ??????? HR (Realize_to_GRealize ?? (λt.True) ? (sem_nop …)) ?? HPre) // +#k * #outc * #Hloop * #ta * #Hta whd in ⊢ (%→?); #Houtc +@(ex_intro ?? k) @(ex_intro ?? outc) % [ @Hloop | >Houtc // ] qed. - -(* boolean machines: machines with two distinguished halting states *) - - - -(* old stuff *) -definition empty_tapes ≝ λsig.λn. -mk_Vector ? n (make_list (tape sig) (mk_tape sig [] []) n) ?. -elim n // normalize // + +lemma acc_sem_if_guarded: ∀sig,M1,M2,M3,P,P2,Rtrue,Rfalse,R2,R3,acc. + M1 ⊨ [acc: Rtrue, Rfalse] → + (GRealize ? M2 P2 R2) → (∀t,t0.P t → Rtrue t t0 → P2 t0) → + M3 ⊨ R3 → + accGRealize ? (ifTM sig M1 (single_finalTM … M2) M3 acc) + (inr … (inl … (inr … start_nop))) P (Rtrue ∘ R2) (Rfalse ∘ R3). +#sig #M1 #M2 #M3 #P #P2 #Rtrue #Rfalse #R2 #R3 #acc #HaccR #HR2 #HP2 #HR3 #t #HPt +cases (HaccR t) #k1 * #outc1 * * #Hloop1 #HMtrue #HMfalse +cases (true_or_false (cstate ?? outc1 == acc)) #Hacc + [lapply (sem_single_final_guarded … HR2) -HR2 #HR2 + cases (HR2 (ctape sig ? outc1) ?) + [|@HP2 [||@HMtrue @(\P Hacc)] // ] + #k2 * #outc2 * #Hloop2 #HM2 + @(ex_intro … (k1+k2)) + @(ex_intro … (lift_confR … (lift_confL … outc2))) % + [% + [@(loop_merge ????????? + (mk_config ? (states sig (ifTM sig M1 (single_finalTM … M2) M3 acc)) + (inr (states sig M1) ? (inl ? (states sig M3) (start sig (single_finalTM sig M2)))) (ctape ?? outc1) ) + ? + (loop_lift ??? + (lift_confL sig (states ? M1) (FinSum (states ? (single_finalTM … M2)) (states ? M3))) + (step sig M1) (step sig (ifTM sig M1 (single_finalTM ? M2) M3 acc)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) + … Hloop1)) + [* * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + |#c0 #Hhalt >(step_if_liftM1 … Hhalt) // + |#x (config_expand ?? outc1); + whd in match (lift_confL ????); + >(trans_if_M1true_acc … Hacc) + [% | @(loop_Some ?????? Hloop1)] + |cases outc1 #s1 #t1 % + |@(loop_lift ??? + (λc.(lift_confR … (lift_confL sig (states ? (single_finalTM ? M2)) (states ? M3) c))) + … Hloop2) + [ * #s2 #t2 % + | #c0 #Hhalt >(step_if_liftM2 … Hhalt) // ] + ] + |#_ @(ex_intro … (ctape ?? outc1)) % + [@HMtrue @(\P Hacc) | >(config_expand ?? outc2) @HM2 ] + ] + |>(config_expand ?? outc2) whd in match (lift_confR ????); + * #H @False_ind @H @eq_f @eq_f >(config_expand ?? outc2) + @single_final // @(loop_Some ?????? Hloop2) + ] + |cases (HR3 (ctape sig ? outc1)) #k2 * #outc2 * #Hloop2 #HM3 + @(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … (lift_confR … outc2))) % + [% + [@(loop_merge ????????? + (mk_config ? (states sig (ifTM sig M1 (single_finalTM … M2) M3 acc)) + (inr (states sig M1) ? (inr (states sig (single_finalTM ? M2)) ? (start sig M3))) (ctape ?? outc1) ) + ? + (loop_lift ??? + (lift_confL sig (states ? M1) (FinSum (states ? (single_finalTM … M2)) (states ? M3))) + (step sig M1) (step sig (ifTM sig M1 (single_finalTM ? M2) M3 acc)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) + … Hloop1)) + [* * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + |#c0 #Hhalt >(step_if_liftM1 … Hhalt) // + |#x (config_expand ?? outc1); + whd in match (lift_confL ????); + >(trans_if_M1true_notacc … Hacc) + [% | @(loop_Some ?????? Hloop1)] + |cases outc1 #s1 #t1 % + |@(loop_lift ??? + (λc.(lift_confR … (lift_confR sig (states ? (single_finalTM ? M2)) (states ? M3) c))) + … Hloop2) + [ * #s2 #t2 % + | #c0 #Hhalt >(step_if_liftM3 … Hhalt) // ] + ] + |>(config_expand ?? outc2) whd in match (lift_confR ????); + #H destruct (H) + ] + |#_ @(ex_intro … (ctape ?? outc1)) % + [@HMfalse @(\Pf Hacc) | >(config_expand ?? outc2) @HM3 ] + ] + ] +qed. + +lemma acc_sem_if_app_guarded: ∀sig,M1,M2,M3,P,P2,Rtrue,Rfalse,R2,R3,R4,R5,acc. + M1 ⊨ [acc: Rtrue, Rfalse] → + (GRealize ? M2 P2 R2) → (∀t,t0.P t → Rtrue t t0 → P2 t0) → + M3 ⊨ R3 → + (∀t1,t2,t3. Rtrue t1 t3 → R2 t3 t2 → R4 t1 t2) → + (∀t1,t2,t3. Rfalse t1 t3 → R3 t3 t2 → R5 t1 t2) → + accGRealize ? (ifTM sig M1 (single_finalTM … M2) M3 acc) + (inr … (inl … (inr … start_nop))) P R4 R5 . +#sig #M1 #M2 #M3 #P #P2 #Rtrue #Rfalse #R2 #R3 #R4 #R5 #acc +#HRacc #HRtrue #Hinv #HRfalse #Hsub1 #Hsub2 +#t #HPt cases (acc_sem_if_guarded … HRacc HRtrue Hinv HRfalse t HPt) +#k * #outc * * #Hloop #Houtc1 #Houtc2 @(ex_intro … k) @(ex_intro … outc) +% [% [@Hloop + |#H cases (Houtc1 H) #t3 * #Hleft #Hright @Hsub1 // ] + |#H cases (Houtc2 H) #t3 * #Hleft #Hright @Hsub2 // ] qed. -definition init ≝ λsig.λM:TM sig.λi:(list sig). - mk_config ?? - (start sig M) - (vec_cons ? (mk_tape sig [] i) ? (empty_tapes sig (tapes_no sig M))) - [ ]. - -definition stop ≝ λsig.λM:TM sig.λc:config sig M. - halt sig M (state sig M c). - -let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ - match n with - [ O ⇒ None ? - | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) - ]. - -(* Compute ? M f states that f is computed by M *) -definition Compute ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). -∀l.∃i.∃c. - loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ - out ?? c = f l. - -(* for decision problems, we accept a string if on termination -output is not empty *) - -definition ComputeB ≝ λsig.λM:TM sig.λf:(list sig) → bool. -∀l.∃i.∃c. - loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ - (isnilb ? (out ?? c) = false). - -(* alternative approach. -We define the notion of computation. The notion must be constructive, -since we want to define functions over it, like lenght and size - -Perche' serve Type[2] se sposto a e b a destra? *) - -inductive cmove (A:Type[0]) (f:A→A) (p:A →bool) (a,b:A): Type[0] ≝ - mk_move: p a = false → b = f a → cmove A f p a b. - -inductive cstar (A:Type[0]) (M:A→A→Type[0]) : A →A → Type[0] ≝ -| empty : ∀a. cstar A M a a -| more : ∀a,b,c. M a b → cstar A M b c → cstar A M a c. - -definition computation ≝ λsig.λM:TM sig. - cstar ? (cmove ? (step sig M) (stop sig M)). - -definition Compute_expl ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). - ∀l.∃c.computation sig M (init sig M l) c → - (stop sig M c = true) ∧ out ?? c = f l. -definition ComputeB_expl ≝ λsig.λM:TM sig.λf:(list sig) → bool. - ∀l.∃c.computation sig M (init sig M l) c → - (stop sig M c = true) ∧ (isnilb ? (out ?? c) = false).