X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fturing%2Fmono.ma;h=3477508c15528dad59bdc44fd0cc654db3e4ab20;hb=600fba840c748f67593838673a6eb40eab9b68e5;hp=38361167a695379c48d4301a8b005cebfd6e410a;hpb=f1c79fb5fbba8a90df94f5c64aa46366cb28ac59;p=helm.git diff --git a/matita/matita/lib/turing/mono.ma b/matita/matita/lib/turing/mono.ma index 38361167a..3477508c1 100644 --- a/matita/matita/lib/turing/mono.ma +++ b/matita/matita/lib/turing/mono.ma @@ -9,109 +9,484 @@ \ / GNU General Public License Version 2 V_____________________________________________________________*) +include "basics/core_notation/fintersects_2.ma". +include "basics/finset.ma". include "basics/vectors.ma". +include "basics/finset.ma". (* include "basics/relations.ma". *) -record tape (sig:FinSet): Type[0] ≝ -{ left : list sig; - right: list sig -}. +(******************************** tape ****************************************) + +(* A tape is essentially a triple 〈left,current,right〉 where however the current +symbol could be missing. This may happen for three different reasons: both tapes +are empty; we are on the left extremity of a non-empty tape (left overflow), or +we are on the right extremity of a non-empty tape (right overflow). *) + +inductive tape (sig:FinSet) : Type[0] ≝ +| niltape : tape sig +| leftof : sig → list sig → tape sig +| rightof : sig → list sig → tape sig +| midtape : list sig → sig → list sig → tape sig. + +definition left ≝ + λsig.λt:tape sig.match t with + [ niltape ⇒ [] | leftof _ _ ⇒ [] | rightof s l ⇒ s::l | midtape l _ _ ⇒ l ]. + +definition right ≝ + λsig.λt:tape sig.match t with + [ niltape ⇒ [] | leftof s r ⇒ s::r | rightof _ _ ⇒ []| midtape _ _ r ⇒ r ]. + +definition current ≝ + λsig.λt:tape sig.match t with + [ midtape _ c _ ⇒ Some ? c | _ ⇒ None ? ]. + +definition mk_tape : + ∀sig:FinSet.list sig → option sig → list sig → tape sig ≝ + λsig,lt,c,rt.match c with + [ Some c' ⇒ midtape sig lt c' rt + | None ⇒ match lt with + [ nil ⇒ match rt with + [ nil ⇒ niltape ? + | cons r0 rs0 ⇒ leftof ? r0 rs0 ] + | cons l0 ls0 ⇒ rightof ? l0 ls0 ] ]. + +lemma right_mk_tape : + ∀sig,ls,c,rs.(c = None ? → ls = [ ] ∨ rs = [ ]) → right ? (mk_tape sig ls c rs) = rs. +#sig #ls #c #rs cases c // cases ls +[ cases rs // +| #l0 #ls0 #H normalize cases (H (refl ??)) #H1 [ destruct (H1) | >H1 % ] ] +qed-. + +lemma left_mk_tape : ∀sig,ls,c,rs.left ? (mk_tape sig ls c rs) = ls. +#sig #ls #c #rs cases c // cases ls // cases rs // +qed. + +lemma current_mk_tape : ∀sig,ls,c,rs.current ? (mk_tape sig ls c rs) = c. +#sig #ls #c #rs cases c // cases ls // cases rs // +qed. + +lemma current_to_midtape: ∀sig,t,c. current sig t = Some ? c → + ∃ls,rs. t = midtape ? ls c rs. +#sig * + [#c whd in ⊢ ((??%?)→?); #Hfalse destruct + |#a #l #c whd in ⊢ ((??%?)→?); #Hfalse destruct + |#a #l #c whd in ⊢ ((??%?)→?); #Hfalse destruct + |#ls #a #rs #c whd in ⊢ ((??%?)→?); #H destruct + @(ex_intro … ls) @(ex_intro … rs) // + ] +qed. + +(*********************************** moves ************************************) inductive move : Type[0] ≝ -| L : move -| R : move -. + | L : move | R : move | N : move. + +(*************************** turning moves into a DeqSet **********************) + +definition move_eq ≝ λm1,m2:move. + match m1 with + [R ⇒ match m2 with [R ⇒ true | _ ⇒ false] + |L ⇒ match m2 with [L ⇒ true | _ ⇒ false] + |N ⇒ match m2 with [N ⇒ true | _ ⇒ false]]. + +lemma move_eq_true:∀m1,m2. + move_eq m1 m2 = true ↔ m1 = m2. +* + [* normalize [% #_ % |2,3: % #H destruct ] + |* normalize [1,3: % #H destruct |% #_ % ] + |* normalize [1,2: % #H destruct |% #_ % ] +qed. + +definition DeqMove ≝ mk_DeqSet move move_eq move_eq_true. + +unification hint 0 ≔ ; + X ≟ DeqMove +(* ---------------------------------------- *) ⊢ + move ≡ carr X. + +unification hint 0 ≔ m1,m2; + X ≟ DeqMove +(* ---------------------------------------- *) ⊢ + move_eq m1 m2 ≡ eqb X m1 m2. + + +(************************ turning DeqMove into a FinSet ***********************) + +definition move_enum ≝ [L;R;N]. -(* We do not distinuish an input tape *) +lemma move_enum_unique: uniqueb ? [L;R;N] = true. +// qed. + +lemma move_enum_complete: ∀x:move. memb ? x [L;R;N] = true. +* // qed. + +definition FinMove ≝ + mk_FinSet DeqMove [L;R;N] move_enum_unique move_enum_complete. + +unification hint 0 ≔ ; + X ≟ FinMove +(* ---------------------------------------- *) ⊢ + move ≡ FinSetcarr X. +(********************************** machine ***********************************) record TM (sig:FinSet): Type[1] ≝ { states : FinSet; - trans : states × (option sig) → states × (option (sig × move)); + trans : states × (option sig) → states × (option sig) × move; start: states; halt : states → bool }. -record config (sig:FinSet) (M:TM sig): Type[0] ≝ -{ cstate : states sig M; +definition tape_move_left ≝ λsig:FinSet.λt:tape sig. + match t with + [ niltape ⇒ niltape sig + | leftof _ _ ⇒ t + | rightof a ls ⇒ midtape sig ls a [ ] + | midtape ls a rs ⇒ + match ls with + [ nil ⇒ leftof sig a rs + | cons a0 ls0 ⇒ midtape sig ls0 a0 (a::rs) + ] + ]. + +definition tape_move_right ≝ λsig:FinSet.λt:tape sig. + match t with + [ niltape ⇒ niltape sig + | rightof _ _ ⇒ t + | leftof a rs ⇒ midtape sig [ ] a rs + | midtape ls a rs ⇒ + match rs with + [ nil ⇒ rightof sig a ls + | cons a0 rs0 ⇒ midtape sig (a::ls) a0 rs0 + ] + ]. + +definition tape_write ≝ λsig.λt: tape sig.λs:option sig. + match s with + [ None ⇒ t + | Some s0 ⇒ midtape ? (left ? t) s0 (right ? t) + ]. + +definition tape_move ≝ λsig.λt: tape sig.λm:move. + match m with + [ R ⇒ tape_move_right ? t + | L ⇒ tape_move_left ? t + | N ⇒ t + ]. + +definition tape_move_mono ≝ + λsig,t,mv. + tape_move sig (tape_write sig t (\fst mv)) (\snd mv). + +record config (sig,states:FinSet): Type[0] ≝ +{ cstate : states; ctape: tape sig }. -definition option_hd ≝ λA.λl:list A. - match l with - [nil ⇒ None ? - |cons a _ ⇒ Some ? a - ]. +lemma config_expand: ∀sig,Q,c. + c = mk_config sig Q (cstate ?? c) (ctape ?? c). +#sig #Q * // +qed. + +lemma config_eq : ∀sig,M,c1,c2. + cstate sig M c1 = cstate sig M c2 → + ctape sig M c1 = ctape sig M c2 → c1 = c2. +#sig #M1 * #s1 #t1 * #s2 #t2 // +qed. -definition tape_move ≝ λsig.λt: tape sig.λm:option (sig × move). - match m with - [ None ⇒ t - | Some m1 ⇒ - match \snd m1 with - [ R ⇒ mk_tape sig ((\fst m1)::(left ? t)) (tail ? (right ? t)) - | L ⇒ mk_tape sig (tail ? (left ? t)) ((\fst m1)::(right ? t)) - ] - ]. +definition step ≝ λsig.λM:TM sig.λc:config sig (states sig M). + let current_char ≝ current ? (ctape ?? c) in + let 〈news,a,mv〉 ≝ trans sig M 〈cstate ?? c,current_char〉 in + mk_config ?? news (tape_move sig (tape_write ? (ctape ?? c) a) mv). -definition step ≝ λsig.λM:TM sig.λc:config sig M. - let current_char ≝ option_hd ? (right ? (ctape ?? c)) in - let 〈news,mv〉 ≝ trans sig M 〈cstate ?? c,current_char〉 in - mk_config ?? news (tape_move sig (ctape ?? c) mv). +(* +lemma step_eq : ∀sig,M,c. + let current_char ≝ current ? (ctape ?? c) in + let 〈news,a,mv〉 ≝ trans sig M 〈cstate ?? c,current_char〉 in + step sig M c = + mk_config ?? news (tape_move sig (tape_write ? (ctape ?? c) a) mv). +#sig #M #c + whd in match (tape_move_mono sig ??); +*) +(******************************** loop ****************************************) let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ match n with [ O ⇒ None ? | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) ]. + +lemma loop_S_true : + ∀A,n,f,p,a. p a = true → + loop A (S n) f p a = Some ? a. +#A #n #f #p #a #pa normalize >pa // +qed. -axiom loop_incr : ∀A,f,p,k1,k2,a1,a2. +lemma loop_S_false : + ∀A,n,f,p,a. p a = false → + loop A (S n) f p a = loop A n f p (f a). +normalize #A #n #f #p #a #Hpa >Hpa % +qed. + +lemma loop_incr : ∀A,f,p,k1,k2,a1,a2. loop A k1 f p a1 = Some ? a2 → loop A (k2+k1) f p a1 = Some ? a2. +#A #f #p #k1 #k2 #a1 #a2 generalize in match a1; elim k1 +[normalize #a0 #Hfalse destruct +|#k1' #IH #a0 Hpa0 whd in ⊢ (??%? → ??%?); // @IH +] +qed. -axiom loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) → +lemma loop_merge : ∀A,f,p,q.(∀b. p b = false → q b = false) → ∀k1,k2,a1,a2,a3,a4. - loop A k1 f p a1 = Some ? a2 → f a2 = a3 → - loop A k2 f q a3 = Some ? a4 → - loop A (k1+k2) f q a1 = Some ? a4. - -(* -lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) → - ∀k1,k2,a1,a2,a3. loop A k1 f p a1 = Some ? a2 → - loop A k2 f q a2 = Some ? a3 → - loop A (k1+k2) f q a1 = Some ? a3. + f a2 = a3 → q a2 = false → + loop A k2 f q a3 = Some ? a4 → + loop A (k1+k2) f q a1 = Some ? a4. #Sig #f #p #q #Hpq #k1 elim k1 - [normalize #k2 #a1 #a2 #a3 #H destruct - |#k1' #Hind #k2 #a1 #a2 #a3 normalize in ⊢ (%→?→?); + [normalize #k2 #a1 #a2 #a3 #a4 #H destruct + |#k1' #Hind #k2 #a1 #a2 #a3 #a4 normalize in ⊢ (%→?); cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?); - [#eqa1a2 destruct #H @loop_incr // - |normalize >(Hpq … pa1) normalize - #H1 #H2 @(Hind … H2) // + [#eqa1a2 destruct #eqa2a3 #Hqa2 #H + whd in ⊢ (??(??%???)?); >plus_n_Sm @loop_incr + whd in ⊢ (??%?); >Hqa2 >eqa2a3 @H + |normalize >(Hpq … pa1) normalize #H1 #H2 #H3 @(Hind … H2) // ] ] qed. -*) + +lemma loop_split : ∀A,f,p,q.(∀b. q b = true → p b = true) → + ∀k,a1,a2. + loop A k f q a1 = Some ? a2 → + ∃k1,a3. + loop A k1 f p a1 = Some ? a3 ∧ + loop A (S(k-k1)) f q a3 = Some ? a2. +#A #f #p #q #Hpq #k elim k + [#a1 #a2 normalize #Heq destruct + |#i #Hind #a1 #a2 normalize + cases (true_or_false (q a1)) #Hqa1 >Hqa1 normalize + [ #Ha1a2 destruct + @(ex_intro … 1) @(ex_intro … a2) % + [normalize >(Hpq …Hqa1) // |>Hqa1 //] + |#Hloop cases (true_or_false (p a1)) #Hpa1 + [@(ex_intro … 1) @(ex_intro … a1) % + [normalize >Hpa1 // |>Hqa1 Hpa1 normalize // | @Hloop2 ] + ] + ] + ] +qed. + +lemma loop_eq : ∀sig,f,q,i,j,a,x,y. + loop sig i f q a = Some ? x → loop sig j f q a = Some ? y → x = y. +#sig #f #q #i #j @(nat_elim2 … i j) +[ #n #a #x #y normalize #Hfalse destruct (Hfalse) +| #n #a #x #y #H1 normalize #Hfalse destruct (Hfalse) +| #n1 #n2 #IH #a #x #y normalize cases (q a) normalize + [ #H1 #H2 destruct % + | /2/ ] +] +qed. + +lemma loop_p_true : + ∀A,k,f,p,a.p a = true → loop A (S k) f p a = Some ? a. +#A #k #f #p #a #Ha normalize >Ha % +qed. + +lemma loop_Some : + ∀A,k,f,p,a,b.loop A k f p a = Some ? b → p b = true. +#A #k #f #p elim k + [#a #b normalize #Hfalse destruct + |#k0 #IH #a #b whd in ⊢ (??%? → ?); cases (true_or_false (p a)) #Hpa + [ >Hpa normalize #H1 destruct // | >Hpa normalize @IH ] + ] +qed. + +lemma loop_lift : ∀A,B,k,lift,f,g,h,hlift,c1,c2. + (∀x.hlift (lift x) = h x) → + (∀x.h x = false → lift (f x) = g (lift x)) → + loop A k f h c1 = Some ? c2 → + loop B k g hlift (lift c1) = Some ? (lift … c2). +#A #B #k #lift #f #g #h #hlift #c1 #c2 #Hfg #Hhlift +generalize in match c1; elim k +[#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) +|#k0 #IH #c0 whd in ⊢ (??%? → ??%?); + cases (true_or_false (h c0)) #Hc0 >Hfg >Hc0 normalize + [ #Heq destruct (Heq) % | (loop_eq … Hloop Hloop1) // +qed. + +definition accRealize ≝ λsig.λM:TM sig.λacc:states sig M.λRtrue,Rfalse. +∀t.∃i.∃outc. + loopM sig M i (initc sig M t) = Some ? outc ∧ + (cstate ?? outc = acc → Rtrue t (ctape ?? outc)) ∧ + (cstate ?? outc ≠ acc → Rfalse t (ctape ?? outc)). + +notation "M ⊨ [q: R1,R2]" non associative with precedence 45 for @{ 'cmodels $M $q $R1 $R2}. +interpretation "conditional realizability" 'cmodels M q R1 R2 = (accRealize ? M q R1 R2). + +(*************************** guarded realizablity *****************************) +definition GRealize ≝ λsig.λM:TM sig.λPre:tape sig →Prop.λR:relation (tape sig). +∀t.Pre t → ∃i.∃outc. + loopM sig M i (initc sig M t) = Some ? outc ∧ R t (ctape ?? outc). + +definition accGRealize ≝ λsig.λM:TM sig.λacc:states sig M. +λPre: tape sig → Prop.λRtrue,Rfalse. +∀t.Pre t → ∃i.∃outc. + loopM sig M i (initc sig M t) = Some ? outc ∧ + (cstate ?? outc = acc → Rtrue t (ctape ?? outc)) ∧ + (cstate ?? outc ≠ acc → Rfalse t (ctape ?? outc)). + +lemma WRealize_to_GRealize : ∀sig.∀M: TM sig.∀Pre,R. + (∀t.Pre t → M ↓ t) → M ⊫ R → GRealize sig M Pre R. +#sig #M #Pre #R #HT #HW #t #HPre cases (HT … t HPre) #i * #outc #Hloop +@(ex_intro … i) @(ex_intro … outc) % // @(HW … i) // +qed. + +lemma Realize_to_GRealize : ∀sig,M.∀P,R. + M ⊨ R → GRealize sig M P R. +#alpha #M #Pre #R #HR #t #HPre +cases (HR t) -HR #k * #outc * #Hloop #HR +@(ex_intro ?? k) @(ex_intro ?? outc) % + [ @Hloop | @HR ] +qed. + +lemma acc_Realize_to_acc_GRealize: ∀sig,M.∀q:states sig M.∀P,R1,R2. + M ⊨ [q:R1,R2] → accGRealize sig M q P R1 R2. +#alpha #M #q #Pre #R1 #R2 #HR #t #HPre +cases (HR t) -HR #k * #outc * * #Hloop #HRtrue #HRfalse +@(ex_intro ?? k) @(ex_intro ?? outc) % + [ % [@Hloop] @HRtrue | @HRfalse] +qed. + +(******************************** monotonicity ********************************) +lemma Realize_to_Realize : ∀alpha,M,R1,R2. + R1 ⊆ R2 → Realize alpha M R1 → Realize alpha M R2. +#alpha #M #R1 #R2 #Himpl #HR1 #intape +cases (HR1 intape) -HR1 #k * #outc * #Hloop #HR1 +@(ex_intro ?? k) @(ex_intro ?? outc) % /2/ +qed. + +lemma WRealize_to_WRealize: ∀sig,M,R1,R2. + R1 ⊆ R2 → WRealize sig M R1 → WRealize ? M R2. +#alpha #M #R1 #R2 #Hsub #HR1 #intape #i #outc #Hloop +@Hsub @(HR1 … i) @Hloop +qed. + +lemma GRealize_to_GRealize : ∀alpha,M,P,R1,R2. + R1 ⊆ R2 → GRealize alpha M P R1 → GRealize alpha M P R2. +#alpha #M #P #R1 #R2 #Himpl #HR1 #intape #HP +cases (HR1 intape HP) -HR1 #k * #outc * #Hloop #HR1 +@(ex_intro ?? k) @(ex_intro ?? outc) % /2/ +qed. + +lemma GRealize_to_GRealize_2 : ∀alpha,M,P1,P2,R1,R2. + P2 ⊆ P1 → R1 ⊆ R2 → GRealize alpha M P1 R1 → GRealize alpha M P2 R2. +#alpha #M #P1 #P2 #R1 #R2 #Himpl1 #Himpl2 #H1 #intape #HP +cases (H1 intape (Himpl1 … HP)) -H1 #k * #outc * #Hloop #H1 +@(ex_intro ?? k) @(ex_intro ?? outc) % /2/ +qed. + +lemma acc_Realize_to_acc_Realize: ∀sig,M.∀q:states sig M.∀R1,R2,R3,R4. + R1 ⊆ R3 → R2 ⊆ R4 → M ⊨ [q:R1,R2] → M ⊨ [q:R3,R4]. +#alpha #M #q #R1 #R2 #R3 #R4 #Hsub13 #Hsub24 #HRa #intape +cases (HRa intape) -HRa #k * #outc * * #Hloop #HRtrue #HRfalse +@(ex_intro ?? k) @(ex_intro ?? outc) % + [ % [@Hloop] #Hq @Hsub13 @HRtrue // | #Hq @Hsub24 @HRfalse //] +qed. + +(**************************** A canonical relation ****************************) + +definition R_TM ≝ λsig.λM:TM sig.λq.λt1,t2. +∃i,outc. + loopM ? M i (mk_config ?? q t1) = Some ? outc ∧ + t2 = (ctape ?? outc). + +lemma R_TM_to_R: ∀sig,M,R. ∀t1,t2. + M ⊫ R → R_TM ? M (start sig M) t1 t2 → R t1 t2. +#sig #M #R #t1 #t2 whd in ⊢ (%→?); #HMR * #i * #outc * +#Hloop #Ht2 >Ht2 @(HMR … Hloop) +qed. + +(******************************** NOP Machine *********************************) + +(* NO OPERATION + t1 = t2 *) + +definition nop_states ≝ initN 1. +definition start_nop : initN 1 ≝ mk_Sig ?? 0 (le_n … 1). + +definition nop ≝ + λalpha:FinSet.mk_TM alpha nop_states + (λp.let 〈q,a〉 ≝ p in 〈q,None ?,N〉) + start_nop (λ_.true). + +definition R_nop ≝ λalpha.λt1,t2:tape alpha.t2 = t1. + +lemma sem_nop : + ∀alpha.nop alpha ⊨ R_nop alpha. +#alpha #intape @(ex_intro ?? 1) +@(ex_intro … (mk_config ?? start_nop intape)) % % +qed. + +lemma nop_single_state: ∀sig.∀q1,q2:states ? (nop sig). q1 = q2. +normalize #sig * #n #ltn1 * #m #ltm1 +generalize in match ltn1; generalize in match ltm1; +<(le_n_O_to_eq … (le_S_S_to_le … ltn1)) <(le_n_O_to_eq … (le_S_S_to_le … ltm1)) +// qed. + +(************************** Sequential Composition ****************************) definition seq_trans ≝ λsig. λM1,M2 : TM sig. λp. let 〈s,a〉 ≝ p in match s with [ inl s1 ⇒ - if halt sig M1 s1 then 〈inr … (start sig M2), None ?〉 - else - let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in - 〈inl … news1,m〉 - | inr s2 ⇒ - let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in - 〈inr … news2,m〉 + if halt sig M1 s1 then 〈inr … (start sig M2), None ?,N〉 + else let 〈news1,newa,m〉 ≝ trans sig M1 〈s1,a〉 in 〈inl … news1,newa,m〉 + | inr s2 ⇒ let 〈news2,newa,m〉 ≝ trans sig M2 〈s2,a〉 in 〈inr … news2,newa,m〉 ]. definition seq ≝ λsig. λM1,M2 : TM sig. @@ -119,204 +494,239 @@ definition seq ≝ λsig. λM1,M2 : TM sig. (FinSum (states sig M1) (states sig M2)) (seq_trans sig M1 M2) (inl … (start sig M1)) - (λs.match s with + (λs.match s with [ inl _ ⇒ false | inr s2 ⇒ halt sig M2 s2]). -definition Rcomp ≝ λA.λR1,R2:relation A.λa1,a2. - ∃am.R1 a1 am ∧ R2 am a2. - -(* -definition injectRl ≝ λsig.λM1.λM2.λR. - λc1,c2. ∃c11,c12. - inl … (cstate sig M1 c11) = cstate sig (seq sig M1 M2) c1 ∧ - inl … (cstate sig M1 c12) = cstate sig (seq sig M1 M2) c2 ∧ - ctape sig M1 c11 = ctape sig (seq sig M1 M2) c1 ∧ - ctape sig M1 c12 = ctape sig (seq sig M1 M2) c2 ∧ - R c11 c12. - -definition injectRr ≝ λsig.λM1.λM2.λR. - λc1,c2. ∃c21,c22. - inr … (cstate sig M2 c21) = cstate sig (seq sig M1 M2) c1 ∧ - inr … (cstate sig M2 c22) = cstate sig (seq sig M1 M2) c2 ∧ - ctape sig M2 c21 = ctape sig (seq sig M1 M2) c1 ∧ - ctape sig M2 c22 = ctape sig (seq sig M1 M2) c2 ∧ - R c21 c22. - -definition Rlink ≝ λsig.λM1,M2.λc1,c2. - ctape sig (seq sig M1 M2) c1 = ctape sig (seq sig M1 M2) c2 ∧ - cstate sig (seq sig M1 M2) c1 = inl … (halt sig M1) ∧ - cstate sig (seq sig M1 M2) c2 = inr … (start sig M2). *) - -interpretation "relation composition" 'compose R1 R2 = (Rcomp ? R1 R2). +notation "a · b" right associative with precedence 65 for @{ 'middot $a $b}. +interpretation "sequential composition" 'middot a b = (seq ? a b). definition lift_confL ≝ - λsig,M1,M2,c.match c with - [ mk_config s t ⇒ mk_config ? (seq sig M1 M2) (inl … s) t ]. + λsig,S1,S2,c.match c with + [ mk_config s t ⇒ mk_config sig (FinSum S1 S2) (inl … s) t ]. + definition lift_confR ≝ - λsig,M1,M2,c.match c with - [ mk_config s t ⇒ mk_config ? (seq sig M1 M2) (inr … s) t ]. + λsig,S1,S2,c.match c with + [ mk_config s t ⇒ mk_config sig (FinSum S1 S2) (inr … s) t ]. definition halt_liftL ≝ - λsig.λM1,M2:TM sig.λs:FinSum (states ? M1) (states ? M2). + λS1,S2,halt.λs:FinSum S1 S2. match s with - [ inl s1 ⇒ halt sig M1 s1 + [ inl s1 ⇒ halt s1 | inr _ ⇒ true ]. (* should be vacuous in all cases we use halt_liftL *) -axiom loop_dec : ∀A,k1,k2,f,p,q,a1,a2,a3. - loop A k1 f p a1 = Some ? a2 → - loop A k2 f q a2 = Some ? a3 → - loop A (k1+k2) f q a1 = Some ? a3. +definition halt_liftR ≝ + λS1,S2,halt.λs:FinSum S1 S2. + match s with + [ inl _ ⇒ false + | inr s2 ⇒ halt s2 ]. -lemma p_halt_liftL : ∀sig,M1,M2,c. - halt sig M1 (cstate … c) = - halt_liftL sig M1 M2 (cstate … (lift_confL … c)). -#sig #M1 #M2 #c cases c #s #t % +lemma p_halt_liftL : ∀sig,S1,S2,halt,c. + halt (cstate sig S1 c) = + halt_liftL S1 S2 halt (cstate … (lift_confL … c)). +#sig #S1 #S2 #halt #c cases c #s #t % qed. -lemma trans_liftL : ∀sig,M1,M2,s,a,news,move. +lemma trans_seq_liftL : ∀sig,M1,M2,s,a,news,newa,move. halt ? M1 s = false → - trans sig M1 〈s,a〉 = 〈news,move〉 → - trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inl … news,move〉. -#sig (*#M1*) * #Q1 #T1 #init1 #halt1 #M2 #s #a #news #move + trans sig M1 〈s,a〉 = 〈news,newa,move〉 → + trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inl … news,newa,move〉. +#sig (*#M1*) * #Q1 #T1 #init1 #halt1 #M2 #s #a #news #newa #move #Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % qed. -lemma config_eq : - ∀sig,M,c1,c2. - cstate sig M c1 = cstate sig M c2 → - ctape sig M c1 = ctape sig M c2 → c1 = c2. -#sig #M1 * #s1 #t1 * #s2 #t2 // +lemma trans_seq_liftR : ∀sig,M1,M2,s,a,news,newa,move. + halt ? M2 s = false → + trans sig M2 〈s,a〉 = 〈news,newa,move〉 → + trans sig (seq sig M1 M2) 〈inr … s,a〉 = 〈inr … news,newa,move〉. +#sig #M1 * #Q2 #T2 #init2 #halt2 #s #a #news #newa #move +#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % +qed. + +lemma step_seq_liftR : ∀sig,M1,M2,c0. + halt ? M2 (cstate ?? c0) = false → + step sig (seq sig M1 M2) (lift_confR sig (states ? M1) (states ? M2) c0) = + lift_confR sig (states ? M1) (states ? M2) (step sig M2 c0). +#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s #t + lapply (refl ? (trans ?? 〈s,current sig t〉)) + cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %); + * #s0 #a0 #m0 cases t + [ #Heq #Hhalt + | 2,3: #s1 #l1 #Heq #Hhalt + |#ls #s1 #rs #Heq #Hhalt ] + whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_seq_liftR … Heq) // qed. -lemma step_lift_confL : ∀sig,M1,M2,c0. +lemma step_seq_liftL : ∀sig,M1,M2,c0. halt ? M1 (cstate ?? c0) = false → - step sig (seq sig M1 M2) (lift_confL sig M1 M2 c0) = - lift_confL sig M1 M2 (step sig M1 c0). -#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s * #lt -#rs #Hhalt -whd in ⊢ (???(????%));whd in ⊢ (???%); -lapply (refl ? (trans ?? 〈s,option_hd sig rs〉)) -cases (trans ?? 〈s,option_hd sig rs〉) in ⊢ (???% → %); -#s0 #m0 #Heq whd in ⊢ (???%); -whd in ⊢ (??(???%)?); whd in ⊢ (??%?); ->(trans_liftL … Heq) -[% | //] -qed. - -lemma loop_liftL : ∀sig,k,M1,M2,c1,c2. - loop ? k (step sig M1) (λc.halt sig M1 (cstate ?? c)) c1 = Some ? c2 → - loop ? k (step sig (seq sig M1 M2)) - (λc.halt_liftL sig M1 M2 (cstate ?? c)) (lift_confL … c1) = - Some ? (lift_confL … c2). -#sig #k #M1 #M2 #c1 #c2 generalize in match c1; -elim k -[#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) -|#k0 #IH #c0 whd in ⊢ (??%? → ??%?); - lapply (refl ? (halt ?? (cstate sig M1 c0))) - cases (halt ?? (cstate sig M1 c0)) in ⊢ (???% → ?); #Hc0 >Hc0 - [ >(?: halt_liftL ??? (cstate sig (seq ? M1 M2) (lift_confL … c0)) = true) - [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % - | // ] - | >(?: halt_liftL ??? (cstate sig (seq ? M1 M2) (lift_confL … c0)) = false) - [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f - @step_lift_confL // - | // ] -qed. - -axiom loop_liftR : ∀sig,k,M1,M2,c1,c2. - loop ? k (step sig M2) (λc.halt sig M2 (cstate ?? c)) c1 = Some ? c2 → - loop ? k (step sig (seq sig M1 M2)) - (λc.halt sig (seq sig M1 M2) (cstate ?? c)) (lift_confR … c1) = - Some ? (lift_confR … c2). - -axiom loop_Some : - ∀A,k,f,p,a,b.loop A k f p a = Some ? b → p b = true. + step sig (seq sig M1 M2) (lift_confL sig (states ? M1) (states ? M2) c0) = + lift_confL sig ?? (step sig M1 c0). +#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s #t + lapply (refl ? (trans ?? 〈s,current sig t〉)) + cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %); + * #s0 #a0 #m0 cases t + [ #Heq #Hhalt + | 2,3: #s1 #l1 #Heq #Hhalt + |#ls #s1 #rs #Heq #Hhalt ] + whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_seq_liftL … Heq) // +qed. lemma trans_liftL_true : ∀sig,M1,M2,s,a. halt ? M1 s = true → - trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inr … (start ? M2),None ?〉. -#sig #M1 #M2 #s #a -#Hhalt whd in ⊢ (??%?); >Hhalt % + trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inr … (start ? M2),None ?,N〉. +#sig #M1 #M2 #s #a #Hhalt whd in ⊢ (??%?); >Hhalt % +qed. + +lemma eq_ctape_lift_conf_L : ∀sig,S1,S2,outc. + ctape sig (FinSum S1 S2) (lift_confL … outc) = ctape … outc. +#sig #S1 #S2 #outc cases outc #s #t % qed. -theorem sem_seq: ∀sig,M1,M2,R1,R2. - Realize sig M1 R1 → Realize sig M2 R2 → - Realize sig (seq sig M1 M2) (R1 ∘ R2). +lemma eq_ctape_lift_conf_R : ∀sig,S1,S2,outc. + ctape sig (FinSum S1 S2) (lift_confR … outc) = ctape … outc. +#sig #S1 #S2 #outc cases outc #s #t % +qed. + +theorem sem_seq: ∀sig.∀M1,M2:TM sig.∀R1,R2. + M1 ⊨ R1 → M2 ⊨ R2 → M1 · M2 ⊨ R1 ∘ R2. #sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 -cases (HR2 (ctape sig M1 outc1)) #k2 * #outc2 * #Hloop2 #HM2 +cases (HR2 (ctape sig (states ? M1) outc1)) #k2 * #outc2 * #Hloop2 #HM2 @(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) % -[@(loop_split ??????????? (loop_liftL … Hloop1)) - [* * +[@(loop_merge ??????????? + (loop_lift ??? (lift_confL sig (states sig M1) (states sig M2)) + (step sig M1) (step sig (seq sig M1 M2)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) … Hloop1)) + [ * * [ #sl #tl whd in ⊢ (??%? → ?); #Hl % | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] - | - |4:@(loop_liftR … Hloop2) - |whd in ⊢ (??(???%)?);whd in ⊢ (??%?); - generalize in match Hloop1; cases outc1 #sc1 #tc1 #Hloop10 - >(trans_liftL_true sig M1 M2 ??) - [ whd in ⊢ (??%?); whd in ⊢ (???%); - @config_eq // - | @(loop_Some ?????? Hloop10) ] + || #c0 #Hhalt (trans_liftL_true sig M1 M2 ??) + [ whd in ⊢ (??%?); whd in ⊢ (???%); + @config_eq whd in ⊢ (???%); // + | @(loop_Some ?????? Hloop10) ] ] -| STOP! (* ... *) +| @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1))) + % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R // ] - -definition empty_tapes ≝ λsig.λn. -mk_Vector ? n (make_list (tape sig) (mk_tape sig [] []) n) ?. -elim n // normalize // qed. -definition init ≝ λsig.λM:TM sig.λi:(list sig). - mk_config ?? - (start sig M) - (vec_cons ? (mk_tape sig [] i) ? (empty_tapes sig (tapes_no sig M))) - [ ]. - -definition stop ≝ λsig.λM:TM sig.λc:config sig M. - halt sig M (state sig M c). - -let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ - match n with - [ O ⇒ None ? - | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) - ]. - -(* Compute ? M f states that f is computed by M *) -definition Compute ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). -∀l.∃i.∃c. - loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ - out ?? c = f l. - -(* for decision problems, we accept a string if on termination -output is not empty *) - -definition ComputeB ≝ λsig.λM:TM sig.λf:(list sig) → bool. -∀l.∃i.∃c. - loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ - (isnilb ? (out ?? c) = false). - -(* alternative approach. -We define the notion of computation. The notion must be constructive, -since we want to define functions over it, like lenght and size - -Perche' serve Type[2] se sposto a e b a destra? *) +theorem sem_seq_app: ∀sig.∀M1,M2:TM sig.∀R1,R2,R3. + M1 ⊨ R1 → M2 ⊨ R2 → R1 ∘ R2 ⊆ R3 → M1 · M2 ⊨ R3. +#sig #M1 #M2 #R1 #R2 #R3 #HR1 #HR2 #Hsub +#t cases (sem_seq … HR1 HR2 t) +#k * #outc * #Hloop #Houtc @(ex_intro … k) @(ex_intro … outc) +% [@Hloop |@Hsub @Houtc] +qed. -inductive cmove (A:Type[0]) (f:A→A) (p:A →bool) (a,b:A): Type[0] ≝ - mk_move: p a = false → b = f a → cmove A f p a b. - -inductive cstar (A:Type[0]) (M:A→A→Type[0]) : A →A → Type[0] ≝ -| empty : ∀a. cstar A M a a -| more : ∀a,b,c. M a b → cstar A M b c → cstar A M a c. +(* composition with guards *) +theorem sem_seq_guarded: ∀sig.∀M1,M2:TM sig.∀Pre1,Pre2,R1,R2. + GRealize sig M1 Pre1 R1 → GRealize sig M2 Pre2 R2 → + (∀t1,t2.Pre1 t1 → R1 t1 t2 → Pre2 t2) → + GRealize sig (M1 · M2) Pre1 (R1 ∘ R2). +#sig #M1 #M2 #Pre1 #Pre2 #R1 #R2 #HGR1 #HGR2 #Hinv #t1 #HPre1 +cases (HGR1 t1 HPre1) #k1 * #outc1 * #Hloop1 #HM1 +cases (HGR2 (ctape sig (states ? M1) outc1) ?) + [2: @(Hinv … HPre1 HM1)] +#k2 * #outc2 * #Hloop2 #HM2 +@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) +% +[@(loop_merge ??????????? + (loop_lift ??? (lift_confL sig (states sig M1) (states sig M2)) + (step sig M1) (step sig (seq sig M1 M2)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) … Hloop1)) + [ * * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + || #c0 #Hhalt (trans_liftL_true sig M1 M2 ??) + [ whd in ⊢ (??%?); whd in ⊢ (???%); + @config_eq whd in ⊢ (???%); // + | @(loop_Some ?????? Hloop10) ] + ] +| @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1))) + % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R // +] +qed. -definition computation ≝ λsig.λM:TM sig. - cstar ? (cmove ? (step sig M) (stop sig M)). +theorem sem_seq_app_guarded: ∀sig.∀M1,M2:TM sig.∀Pre1,Pre2,R1,R2,R3. + GRealize sig M1 Pre1 R1 → GRealize sig M2 Pre2 R2 → + (∀t1,t2.Pre1 t1 → R1 t1 t2 → Pre2 t2) → R1 ∘ R2 ⊆ R3 → + GRealize sig (M1 · M2) Pre1 R3. +#sig #M1 #M2 #Pre1 #Pre2 #R1 #R2 #R3 #HR1 #HR2 #Hinv #Hsub +#t #HPre1 cases (sem_seq_guarded … HR1 HR2 Hinv t HPre1) +#k * #outc * #Hloop #Houtc @(ex_intro … k) @(ex_intro … outc) +% [@Hloop |@Hsub @Houtc] +qed. -definition Compute_expl ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). - ∀l.∃c.computation sig M (init sig M l) c → - (stop sig M c = true) ∧ out ?? c = f l. +theorem acc_sem_seq : ∀sig.∀M1,M2:TM sig.∀R1,Rtrue,Rfalse,acc. + M1 ⊨ R1 → M2 ⊨ [ acc: Rtrue, Rfalse ] → + M1 · M2 ⊨ [ inr … acc: R1 ∘ Rtrue, R1 ∘ Rfalse ]. +#sig #M1 #M2 #R1 #Rtrue #Rfalse #acc #HR1 #HR2 #t +cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 +cases (HR2 (ctape sig (states ? M1) outc1)) #k2 * #outc2 * * #Hloop2 +#HMtrue #HMfalse +@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) +% [ % +[@(loop_merge … + (loop_lift ??? (lift_confL sig (states sig M1) (states sig M2)) + (step sig M1) (step sig (seq sig M1 M2)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) … Hloop1)) + [ * * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + || #c0 #Hhalt (trans_liftL_true sig M1 M2 ??) + [ whd in ⊢ (??%?); whd in ⊢ (???%); // + | @(loop_Some ?????? Hloop10) ] + ] +| >(config_expand … outc2) in ⊢ (%→?); whd in ⊢ (??%?→?); + #Hqtrue destruct (Hqtrue) + @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1))) + % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R /2/ ] +| >(config_expand … outc2) in ⊢ (%→?); whd in ⊢ (?(??%?)→?); #Hqfalse + @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1))) + % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R @HMfalse + @(not_to_not … Hqfalse) // +] +qed. -definition ComputeB_expl ≝ λsig.λM:TM sig.λf:(list sig) → bool. - ∀l.∃c.computation sig M (init sig M l) c → - (stop sig M c = true) ∧ (isnilb ? (out ?? c) = false). +lemma acc_sem_seq_app : ∀sig.∀M1,M2:TM sig.∀R1,Rtrue,Rfalse,R2,R3,acc. + M1 ⊨ R1 → M2 ⊨ [acc: Rtrue, Rfalse] → + (∀t1,t2,t3. R1 t1 t3 → Rtrue t3 t2 → R2 t1 t2) → + (∀t1,t2,t3. R1 t1 t3 → Rfalse t3 t2 → R3 t1 t2) → + M1 · M2 ⊨ [inr … acc : R2, R3]. +#sig #M1 #M2 #R1 #Rtrue #Rfalse #R2 #R3 #acc +#HR1 #HRacc #Hsub1 #Hsub2 +#t cases (acc_sem_seq … HR1 HRacc t) +#k * #outc * * #Hloop #Houtc1 #Houtc2 @(ex_intro … k) @(ex_intro … outc) +% [% [@Hloop + |#H cases (Houtc1 H) #t3 * #Hleft #Hright @Hsub1 // ] + |#H cases (Houtc2 H) #t3 * #Hleft #Hright @Hsub2 // ] +qed.