X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fturing%2Fmono.ma;h=37ce2f2dee192414fc174a9783f0fd0fe4a5dd89;hb=5535cd4e08fd8d1e7e6e067eac1bb6c1bf8fcbbf;hp=e89d710c948d2cf157d516e703f9c61ce76033d0;hpb=28c261aad4d710c9f218fbbbaf1ed3b45c1caf72;p=helm.git diff --git a/matita/matita/lib/turing/mono.ma b/matita/matita/lib/turing/mono.ma index e89d710c9..37ce2f2de 100644 --- a/matita/matita/lib/turing/mono.ma +++ b/matita/matita/lib/turing/mono.ma @@ -12,12 +12,12 @@ include "basics/vectors.ma". (* include "basics/relations.ma". *) -(* -record tape (sig:FinSet): Type[0] ≝ -{ left : list (option sig); - right: list (option sig) -}. -*) +(******************************** tape ****************************************) + +(* A tape is essentially a triple 〈left,current,right〉 where however the current +symbol could be missing. This may happen for three different reasons: both tapes +are empty; we are on the left extremity of a non-empty tape (left overflow), or +we are on the right extremity of a non-empty tape (right overflow). *) inductive tape (sig:FinSet) : Type[0] ≝ | niltape : tape sig @@ -27,23 +27,15 @@ inductive tape (sig:FinSet) : Type[0] ≝ definition left ≝ λsig.λt:tape sig.match t with - [ niltape ⇒ [] - | leftof _ _ ⇒ [] - | rightof s l ⇒ s::l - | midtape l _ _ ⇒ l ]. + [ niltape ⇒ [] | leftof _ _ ⇒ [] | rightof s l ⇒ s::l | midtape l _ _ ⇒ l ]. definition right ≝ λsig.λt:tape sig.match t with - [ niltape ⇒ [] - | leftof s r ⇒ s::r - | rightof _ _ ⇒ [] - | midtape _ _ r ⇒ r ]. - + [ niltape ⇒ [] | leftof s r ⇒ s::r | rightof _ _ ⇒ []| midtape _ _ r ⇒ r ]. definition current ≝ λsig.λt:tape sig.match t with - [ midtape _ c _ ⇒ Some ? c - | _ ⇒ None ? ]. + [ midtape _ c _ ⇒ Some ? c | _ ⇒ None ? ]. definition mk_tape : ∀sig:FinSet.list sig → option sig → list sig → tape sig ≝ @@ -55,13 +47,23 @@ definition mk_tape : | cons r0 rs0 ⇒ leftof ? r0 rs0 ] | cons l0 ls0 ⇒ rightof ? l0 ls0 ] ]. +lemma current_to_midtape: ∀sig,t,c. current sig t = Some ? c → + ∃ls,rs. t = midtape ? ls c rs. +#sig * + [#c whd in ⊢ ((??%?)→?); #Hfalse destruct + |#a #l #c whd in ⊢ ((??%?)→?); #Hfalse destruct + |#a #l #c whd in ⊢ ((??%?)→?); #Hfalse destruct + |#ls #a #rs #c whd in ⊢ ((??%?)→?); #H destruct + @(ex_intro … ls) @(ex_intro … rs) // + ] +qed. + +(*********************************** moves ************************************) + inductive move : Type[0] ≝ -| L : move -| R : move -| N : move -. + | L : move | R : move | N : move. -(* We do not distinuish an input tape *) +(********************************** machine ***********************************) record TM (sig:FinSet): Type[1] ≝ { states : FinSet; @@ -70,23 +72,6 @@ record TM (sig:FinSet): Type[1] ≝ halt : states → bool }. -record config (sig,states:FinSet): Type[0] ≝ -{ cstate : states; - ctape: tape sig -}. - -(* definition option_hd ≝ λA.λl:list (option A). - match l with - [nil ⇒ None ? - |cons a _ ⇒ a - ]. - *) - -(*definition tape_write ≝ λsig.λt:tape sig.λs:sig. - pa // qed. lemma loop_S_false : ∀A,n,f,p,a. p a = false → - loop A (S n) f p a = loop A n f p (f a). + loop A (S n) f p a = loop A n f p (f a). normalize #A #n #f #p #a #Hpa >Hpa % qed. @@ -191,8 +156,7 @@ lemma loop_merge : ∀A,f,p,q.(∀b. p b = false → q b = false) → [#eqa1a2 destruct #eqa2a3 #Hqa2 #H whd in ⊢ (??(??%???)?); >plus_n_Sm @loop_incr whd in ⊢ (??%?); >Hqa2 >eqa2a3 @H - |normalize >(Hpq … pa1) normalize - #H1 #H2 #H3 @(Hind … H2) // + |normalize >(Hpq … pa1) normalize #H1 #H2 #H3 @(Hind … H2) // ] ] qed. @@ -221,101 +185,207 @@ lemma loop_split : ∀A,f,p,q.(∀b. q b = true → p b = true) → ] qed. -(* -lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) → - ∀k1,k2,a1,a2,a3. - loop A k1 f p a1 = Some ? a2 → - loop A k2 f q a2 = Some ? a3 → - loop A (k1+k2) f q a1 = Some ? a3. -#Sig #f #p #q #Hpq #k1 elim k1 - [normalize #k2 #a1 #a2 #a3 #H destruct - |#k1' #Hind #k2 #a1 #a2 #a3 normalize in ⊢ (%→?→?); - cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?); - [#eqa1a2 destruct #H @loop_incr // - |normalize >(Hpq … pa1) normalize - #H1 #H2 @(Hind … H2) // - ] - ] +lemma loop_eq : ∀sig,f,q,i,j,a,x,y. + loop sig i f q a = Some ? x → loop sig j f q a = Some ? y → x = y. +#sig #f #q #i #j @(nat_elim2 … i j) +[ #n #a #x #y normalize #Hfalse destruct (Hfalse) +| #n #a #x #y #H1 normalize #Hfalse destruct (Hfalse) +| #n1 #n2 #IH #a #x #y normalize cases (q a) normalize + [ #H1 #H2 destruct % + | /2/ ] +] +qed. + +lemma loop_p_true : + ∀A,k,f,p,a.p a = true → loop A (S k) f p a = Some ? a. +#A #k #f #p #a #Ha normalize >Ha % +qed. + +lemma loop_Some : + ∀A,k,f,p,a,b.loop A k f p a = Some ? b → p b = true. +#A #k #f #p elim k + [#a #b normalize #Hfalse destruct + |#k0 #IH #a #b whd in ⊢ (??%? → ?); cases (true_or_false (p a)) #Hpa + [ >Hpa normalize #H1 destruct // | >Hpa normalize @IH ] + ] +qed. + +lemma loop_lift : ∀A,B,k,lift,f,g,h,hlift,c1,c2. + (∀x.hlift (lift x) = h x) → + (∀x.h x = false → lift (f x) = g (lift x)) → + loop A k f h c1 = Some ? c2 → + loop B k g hlift (lift c1) = Some ? (lift … c2). +#A #B #k #lift #f #g #h #hlift #c1 #c2 #Hfg #Hhlift +generalize in match c1; elim k +[#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) +|#k0 #IH #c0 whd in ⊢ (??%? → ??%?); + cases (true_or_false (h c0)) #Hc0 >Hfg >Hc0 normalize + [ #Heq destruct (Heq) % | (loop_eq … Hloop Hloop1) // qed. -theorem Realize_to_WRealize : ∀sig,M,R.Realize sig M R → WRealize sig M R. -#sig #M #R #H1 #inc #i #outc #Hloop -cases (H1 inc) #k * #outc1 * #Hloop1 #HR ->(loop_eq … Hloop Hloop1) // +definition accRealize ≝ λsig.λM:TM sig.λacc:states sig M.λRtrue,Rfalse. +∀t.∃i.∃outc. + loopM sig M i (initc sig M t) = Some ? outc ∧ + (cstate ?? outc = acc → Rtrue t (ctape ?? outc)) ∧ + (cstate ?? outc ≠ acc → Rfalse t (ctape ?? outc)). + +notation "M ⊨ [q: R1,R2]" non associative with precedence 45 for @{ 'cmodels $M $q $R1 $R2}. +interpretation "conditional realizability" 'cmodels M q R1 R2 = (accRealize ? M q R1 R2). + +(*************************** guarded realizablity *****************************) +definition GRealize ≝ λsig.λM:TM sig.λPre:tape sig →Prop.λR:relation (tape sig). +∀t.Pre t → ∃i.∃outc. + loopM sig M i (initc sig M t) = Some ? outc ∧ R t (ctape ?? outc). + +definition accGRealize ≝ λsig.λM:TM sig.λacc:states sig M. +λPre: tape sig → Prop.λRtrue,Rfalse. +∀t.Pre t → ∃i.∃outc. + loopM sig M i (initc sig M t) = Some ? outc ∧ + (cstate ?? outc = acc → Rtrue t (ctape ?? outc)) ∧ + (cstate ?? outc ≠ acc → Rfalse t (ctape ?? outc)). + +lemma WRealize_to_GRealize : ∀sig.∀M: TM sig.∀Pre,R. + (∀t.Pre t → M ↓ t) → M ⊫ R → GRealize sig M Pre R. +#sig #M #Pre #R #HT #HW #t #HPre cases (HT … t HPre) #i * #outc #Hloop +@(ex_intro … i) @(ex_intro … outc) % // @(HW … i) // qed. -definition accRealize ≝ λsig.λM:TM sig.λacc:states sig M.λRtrue,Rfalse:relation (tape sig). -∀t.∃i.∃outc. - loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) (initc sig M t) = Some ? outc ∧ - (cstate ?? outc = acc → Rtrue t (ctape ?? outc)) ∧ - (cstate ?? outc ≠ acc → Rfalse t (ctape ?? outc)). +lemma Realize_to_GRealize : ∀sig,M.∀P,R. + M ⊨ R → GRealize sig M P R. +#alpha #M #Pre #R #HR #t #HPre +cases (HR t) -HR #k * #outc * #Hloop #HR +@(ex_intro ?? k) @(ex_intro ?? outc) % + [ @Hloop | @HR ] +qed. -(* NO OPERATION +lemma acc_Realize_to_acc_GRealize: ∀sig,M.∀q:states sig M.∀P,R1,R2. + M ⊨ [q:R1,R2] → accGRealize sig M q P R1 R2. +#alpha #M #q #Pre #R1 #R2 #HR #t #HPre +cases (HR t) -HR #k * #outc * * #Hloop #HRtrue #HRfalse +@(ex_intro ?? k) @(ex_intro ?? outc) % + [ % [@Hloop] @HRtrue | @HRfalse] +qed. + +(******************************** monotonicity ********************************) +lemma Realize_to_Realize : ∀alpha,M,R1,R2. + R1 ⊆ R2 → Realize alpha M R1 → Realize alpha M R2. +#alpha #M #R1 #R2 #Himpl #HR1 #intape +cases (HR1 intape) -HR1 #k * #outc * #Hloop #HR1 +@(ex_intro ?? k) @(ex_intro ?? outc) % /2/ +qed. + +lemma WRealize_to_WRealize: ∀sig,M,R1,R2. + R1 ⊆ R2 → WRealize sig M R1 → WRealize ? M R2. +#alpha #M #R1 #R2 #Hsub #HR1 #intape #i #outc #Hloop +@Hsub @(HR1 … i) @Hloop +qed. + +lemma GRealize_to_GRealize : ∀alpha,M,P,R1,R2. + R1 ⊆ R2 → GRealize alpha M P R1 → GRealize alpha M P R2. +#alpha #M #P #R1 #R2 #Himpl #HR1 #intape #HP +cases (HR1 intape HP) -HR1 #k * #outc * #Hloop #HR1 +@(ex_intro ?? k) @(ex_intro ?? outc) % /2/ +qed. + +lemma acc_Realize_to_acc_Realize: ∀sig,M.∀q:states sig M.∀R1,R2,R3,R4. + R1 ⊆ R3 → R2 ⊆ R4 → M ⊨ [q:R1,R2] → M ⊨ [q:R3,R4]. +#alpha #M #q #R1 #R2 #R3 #R4 #Hsub13 #Hsub24 #HRa #intape +cases (HRa intape) -HRa #k * #outc * * #Hloop #HRtrue #HRfalse +@(ex_intro ?? k) @(ex_intro ?? outc) % + [ % [@Hloop] #Hq @Hsub13 @HRtrue // | #Hq @Hsub24 @HRfalse //] +qed. + +(**************************** A canonical relation ****************************) + +definition R_TM ≝ λsig.λM:TM sig.λq.λt1,t2. +∃i,outc. + loopM ? M i (mk_config ?? q t1) = Some ? outc ∧ + t2 = (ctape ?? outc). + +lemma R_TM_to_R: ∀sig,M,R. ∀t1,t2. + M ⊫ R → R_TM ? M (start sig M) t1 t2 → R t1 t2. +#sig #M #R #t1 #t2 whd in ⊢ (%→?); #HMR * #i * #outc * +#Hloop #Ht2 >Ht2 @(HMR … Hloop) +qed. + +(******************************** NOP Machine *********************************) - t1 = t2 - *) +(* NO OPERATION + t1 = t2 *) definition nop_states ≝ initN 1. +definition start_nop : initN 1 ≝ mk_Sig ?? 0 (le_n … 1). definition nop ≝ λalpha:FinSet.mk_TM alpha nop_states (λp.let 〈q,a〉 ≝ p in 〈q,None ?〉) - O (λ_.true). + start_nop (λ_.true). definition R_nop ≝ λalpha.λt1,t2:tape alpha.t2 = t1. lemma sem_nop : - ∀alpha.Realize alpha (nop alpha) (R_nop alpha). -#alpha #intape @(ex_intro ?? 1) @ex_intro [| % normalize % ] + ∀alpha.nop alpha ⊨ R_nop alpha. +#alpha #intape @(ex_intro ?? 1) +@(ex_intro … (mk_config ?? start_nop intape)) % % qed. -(* Compositions *) +lemma nop_single_state: ∀sig.∀q1,q2:states ? (nop sig). q1 = q2. +normalize #sig * #n #ltn1 * #m #ltm1 +generalize in match ltn1; generalize in match ltm1; +<(le_n_O_to_eq … (le_S_S_to_le … ltn1)) <(le_n_O_to_eq … (le_S_S_to_le … ltm1)) +// qed. + +(************************** Sequential Composition ****************************) definition seq_trans ≝ λsig. λM1,M2 : TM sig. λp. let 〈s,a〉 ≝ p in match s with [ inl s1 ⇒ if halt sig M1 s1 then 〈inr … (start sig M2), None ?〉 - else - let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in - 〈inl … news1,m〉 - | inr s2 ⇒ - let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in - 〈inr … news2,m〉 + else let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in 〈inl … news1,m〉 + | inr s2 ⇒ let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in 〈inr … news2,m〉 ]. definition seq ≝ λsig. λM1,M2 : TM sig. @@ -323,35 +393,11 @@ definition seq ≝ λsig. λM1,M2 : TM sig. (FinSum (states sig M1) (states sig M2)) (seq_trans sig M1 M2) (inl … (start sig M1)) - (λs.match s with + (λs.match s with [ inl _ ⇒ false | inr s2 ⇒ halt sig M2 s2]). -definition Rcomp ≝ λA.λR1,R2:relation A.λa1,a2. - ∃am.R1 a1 am ∧ R2 am a2. - -(* -definition injectRl ≝ λsig.λM1.λM2.λR. - λc1,c2. ∃c11,c12. - inl … (cstate sig M1 c11) = cstate sig (seq sig M1 M2) c1 ∧ - inl … (cstate sig M1 c12) = cstate sig (seq sig M1 M2) c2 ∧ - ctape sig M1 c11 = ctape sig (seq sig M1 M2) c1 ∧ - ctape sig M1 c12 = ctape sig (seq sig M1 M2) c2 ∧ - R c11 c12. - -definition injectRr ≝ λsig.λM1.λM2.λR. - λc1,c2. ∃c21,c22. - inr … (cstate sig M2 c21) = cstate sig (seq sig M1 M2) c1 ∧ - inr … (cstate sig M2 c22) = cstate sig (seq sig M1 M2) c2 ∧ - ctape sig M2 c21 = ctape sig (seq sig M1 M2) c1 ∧ - ctape sig M2 c22 = ctape sig (seq sig M1 M2) c2 ∧ - R c21 c22. - -definition Rlink ≝ λsig.λM1,M2.λc1,c2. - ctape sig (seq sig M1 M2) c1 = ctape sig (seq sig M1 M2) c2 ∧ - cstate sig (seq sig M1 M2) c1 = inl … (halt sig M1) ∧ - cstate sig (seq sig M1 M2) c2 = inr … (start sig M2). *) - -interpretation "relation composition" 'compose R1 R2 = (Rcomp ? R1 R2). +notation "a · b" right associative with precedence 65 for @{ 'middot $a $b}. +interpretation "sequential composition" 'middot a b = (seq ? a b). definition lift_confL ≝ λsig,S1,S2,c.match c with @@ -379,7 +425,7 @@ lemma p_halt_liftL : ∀sig,S1,S2,halt,c. #sig #S1 #S2 #halt #c cases c #s #t % qed. -lemma trans_liftL : ∀sig,M1,M2,s,a,news,move. +lemma trans_seq_liftL : ∀sig,M1,M2,s,a,news,move. halt ? M1 s = false → trans sig M1 〈s,a〉 = 〈news,move〉 → trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inl … news,move〉. @@ -387,7 +433,7 @@ lemma trans_liftL : ∀sig,M1,M2,s,a,news,move. #Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % qed. -lemma trans_liftR : ∀sig,M1,M2,s,a,news,move. +lemma trans_seq_liftR : ∀sig,M1,M2,s,a,news,move. halt ? M2 s = false → trans sig M2 〈s,a〉 = 〈news,move〉 → trans sig (seq sig M1 M2) 〈inr … s,a〉 = 〈inr … news,move〉. @@ -395,14 +441,7 @@ lemma trans_liftR : ∀sig,M1,M2,s,a,news,move. #Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % qed. -lemma config_eq : - ∀sig,M,c1,c2. - cstate sig M c1 = cstate sig M c2 → - ctape sig M c1 = ctape sig M c2 → c1 = c2. -#sig #M1 * #s1 #t1 * #s2 #t2 // -qed. - -lemma step_lift_confR : ∀sig,M1,M2,c0. +lemma step_seq_liftR : ∀sig,M1,M2,c0. halt ? M2 (cstate ?? c0) = false → step sig (seq sig M1 M2) (lift_confR sig (states ? M1) (states ? M2) c0) = lift_confR sig (states ? M1) (states ? M2) (step sig M2 c0). @@ -413,13 +452,11 @@ lemma step_lift_confR : ∀sig,M1,M2,c0. [ #Heq #Hhalt | 2,3: #s1 #l1 #Heq #Hhalt |#ls #s1 #rs #Heq #Hhalt ] - whd in ⊢ (???(????%)); >Heq - whd in ⊢ (???%); - whd in ⊢ (??(???%)?); whd in ⊢ (??%?); - >(trans_liftR … Heq) // + whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_seq_liftR … Heq) // qed. -lemma step_lift_confL : ∀sig,M1,M2,c0. +lemma step_seq_liftL : ∀sig,M1,M2,c0. halt ? M1 (cstate ?? c0) = false → step sig (seq sig M1 M2) (lift_confL sig (states ? M1) (states ? M2) c0) = lift_confL sig ?? (step sig M1 c0). @@ -430,84 +467,14 @@ lemma step_lift_confL : ∀sig,M1,M2,c0. [ #Heq #Hhalt | 2,3: #s1 #l1 #Heq #Hhalt |#ls #s1 #rs #Heq #Hhalt ] - whd in ⊢ (???(????%)); >Heq - whd in ⊢ (???%); - whd in ⊢ (??(???%)?); whd in ⊢ (??%?); - >(trans_liftL … Heq) // + whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_seq_liftL … Heq) // qed. -lemma loop_lift : ∀A,B,k,lift,f,g,h,hlift,c1,c2. - (∀x.hlift (lift x) = h x) → - (∀x.h x = false → lift (f x) = g (lift x)) → - loop A k f h c1 = Some ? c2 → - loop B k g hlift (lift c1) = Some ? (lift … c2). -#A #B #k #lift #f #g #h #hlift #c1 #c2 #Hfg #Hhlift -generalize in match c1; elim k -[#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) -|#k0 #IH #c0 whd in ⊢ (??%? → ??%?); - cases (true_or_false (h c0)) #Hc0 >Hfg >Hc0 - [ normalize #Heq destruct (Heq) % - | normalize Hc0 - [ >(?: halt_liftL ?? (halt sig M1) (cstate sig ? (lift_confL … c0)) = true) - [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % - | (?: halt_liftL ?? (halt sig M1) (cstate ?? (lift_confL … c0)) = false) - [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f - @step_lift_confL // - | Hc0 - [ >(?: halt ? (seq sig M1 M2) (cstate sig ? (lift_confR … c0)) = true) - [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % - | (?: halt ? (seq sig M1 M2) (cstate sig ? (lift_confR … c0)) = false) - [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f - @step_lift_confR // - | Hpa normalize #H1 destruct // - | >Hpa normalize @IH - ] -] -qed. - lemma trans_liftL_true : ∀sig,M1,M2,s,a. halt ? M1 s = true → trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inr … (start ? M2),None ?〉. -#sig #M1 #M2 #s #a -#Hhalt whd in ⊢ (??%?); >Hhalt % +#sig #M1 #M2 #s #a #Hhalt whd in ⊢ (??%?); >Hhalt % qed. lemma eq_ctape_lift_conf_L : ∀sig,S1,S2,outc. @@ -520,9 +487,8 @@ lemma eq_ctape_lift_conf_R : ∀sig,S1,S2,outc. #sig #S1 #S2 #outc cases outc #s #t % qed. -theorem sem_seq: ∀sig,M1,M2,R1,R2. - Realize sig M1 R1 → Realize sig M2 R2 → - Realize sig (seq sig M1 M2) (R1 ∘ R2). +theorem sem_seq: ∀sig.∀M1,M2:TM sig.∀R1,R2. + M1 ⊨ R1 → M2 ⊨ R2 → M1 · M2 ⊨ R1 ∘ R2. #sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 cases (HR2 (ctape sig (states ? M1) outc1)) #k2 * #outc2 * #Hloop2 #HM2 @@ -536,12 +502,12 @@ cases (HR2 (ctape sig (states ? M1) outc1)) #k2 * #outc2 * #Hloop2 #HM2 [ * * [ #sl #tl whd in ⊢ (??%? → ?); #Hl % | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] - || #c0 #Hhalt (trans_liftL_true sig M1 M2 ??) @@ -554,3 +520,58 @@ cases (HR2 (ctape sig (states ? M1) outc1)) #k2 * #outc2 * #Hloop2 #HM2 ] qed. +theorem sem_seq_app: ∀sig.∀M1,M2:TM sig.∀R1,R2,R3. + M1 ⊨ R1 → M2 ⊨ R2 → R1 ∘ R2 ⊆ R3 → M1 · M2 ⊨ R3. +#sig #M1 #M2 #R1 #R2 #R3 #HR1 #HR2 #Hsub +#t cases (sem_seq … HR1 HR2 t) +#k * #outc * #Hloop #Houtc @(ex_intro … k) @(ex_intro … outc) +% [@Hloop |@Hsub @Houtc] +qed. + +(* composition with guards *) +theorem sem_seq_guarded: ∀sig.∀M1,M2:TM sig.∀Pre1,Pre2,R1,R2. + GRealize sig M1 Pre1 R1 → GRealize sig M2 Pre2 R2 → + (∀t1,t2.Pre1 t1 → R1 t1 t2 → Pre2 t2) → + GRealize sig (M1 · M2) Pre1 (R1 ∘ R2). +#sig #M1 #M2 #Pre1 #Pre2 #R1 #R2 #HGR1 #HGR2 #Hinv #t1 #HPre1 +cases (HGR1 t1 HPre1) #k1 * #outc1 * #Hloop1 #HM1 +cases (HGR2 (ctape sig (states ? M1) outc1) ?) + [2: @(Hinv … HPre1 HM1)] +#k2 * #outc2 * #Hloop2 #HM2 +@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) +% +[@(loop_merge ??????????? + (loop_lift ??? (lift_confL sig (states sig M1) (states sig M2)) + (step sig M1) (step sig (seq sig M1 M2)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) … Hloop1)) + [ * * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + || #c0 #Hhalt (trans_liftL_true sig M1 M2 ??) + [ whd in ⊢ (??%?); whd in ⊢ (???%); + @config_eq whd in ⊢ (???%); // + | @(loop_Some ?????? Hloop10) ] + ] +| @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1))) + % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R // +] +qed. + +theorem sem_seq_app_guarded: ∀sig.∀M1,M2:TM sig.∀Pre1,Pre2,R1,R2,R3. + GRealize sig M1 Pre1 R1 → GRealize sig M2 Pre2 R2 → + (∀t1,t2.Pre1 t1 → R1 t1 t2 → Pre2 t2) → R1 ∘ R2 ⊆ R3 → + GRealize sig (M1 · M2) Pre1 R3. +#sig #M1 #M2 #Pre1 #Pre2 #R1 #R2 #R3 #HR1 #HR2 #Hinv #Hsub +#t #HPre1 cases (sem_seq_guarded … HR1 HR2 Hinv t HPre1) +#k * #outc * #Hloop #Houtc @(ex_intro … k) @(ex_intro … outc) +% [@Hloop |@Hsub @Houtc] +qed.