X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fturing%2Fmono.ma;h=fae3c7673c5097bbd9998785f3e5679ac0ef7a4b;hb=08a53e81b883cc19ddec52a662e9c171656ec364;hp=fbe46d90e4f6869c1b84e7c8019e6726da99423e;hpb=e06d2709c5bd9f9af9f42d7026f9da7056b82174;p=helm.git diff --git a/matita/matita/lib/turing/mono.ma b/matita/matita/lib/turing/mono.ma index fbe46d90e..fae3c7673 100644 --- a/matita/matita/lib/turing/mono.ma +++ b/matita/matita/lib/turing/mono.ma @@ -12,14 +12,53 @@ include "basics/vectors.ma". (* include "basics/relations.ma". *) +(* record tape (sig:FinSet): Type[0] ≝ -{ left : list sig; - right: list sig +{ left : list (option sig); + right: list (option sig) }. +*) + +inductive tape (sig:FinSet) : Type[0] ≝ +| niltape : tape sig +| leftof : sig → list sig → tape sig +| rightof : sig → list sig → tape sig +| midtape : list sig → sig → list sig → tape sig. + +definition left ≝ + λsig.λt:tape sig.match t with + [ niltape ⇒ [] + | leftof _ _ ⇒ [] + | rightof s l ⇒ s::l + | midtape l _ _ ⇒ l ]. + +definition right ≝ + λsig.λt:tape sig.match t with + [ niltape ⇒ [] + | leftof s r ⇒ s::r + | rightof _ _ ⇒ [] + | midtape _ _ r ⇒ r ]. + + +definition current ≝ + λsig.λt:tape sig.match t with + [ midtape _ c _ ⇒ Some ? c + | _ ⇒ None ? ]. + +definition mk_tape : + ∀sig:FinSet.list sig → option sig → list sig → tape sig ≝ + λsig,lt,c,rt.match c with + [ Some c' ⇒ midtape sig lt c' rt + | None ⇒ match lt with + [ nil ⇒ match rt with + [ nil ⇒ niltape ? + | cons r0 rs0 ⇒ leftof ? r0 rs0 ] + | cons l0 ls0 ⇒ rightof ? l0 ls0 ] ]. inductive move : Type[0] ≝ | L : move | R : move +| N : move . (* We do not distinuish an input tape *) @@ -31,29 +70,83 @@ record TM (sig:FinSet): Type[1] ≝ halt : states → bool }. -record config (sig:FinSet) (M:TM sig): Type[0] ≝ -{ cstate : states sig M; +record config (sig,states:FinSet): Type[0] ≝ +{ cstate : states; ctape: tape sig }. -definition option_hd ≝ λA.λl:list A. +(* definition option_hd ≝ λA.λl:list (option A). match l with [nil ⇒ None ? - |cons a _ ⇒ Some ? a + |cons a _ ⇒ a ]. + *) -definition tape_move ≝ λsig.λt: tape sig.λm:option (sig × move). - match m with +(*definition tape_write ≝ λsig.λt:tape sig.λs:sig. + Hpa0 whd in ⊢ (??%? → ??%?); // @IH +] +qed. + +lemma loop_merge : ∀A,f,p,q.(∀b. p b = false → q b = false) → + ∀k1,k2,a1,a2,a3,a4. + loop A k1 f p a1 = Some ? a2 → + f a2 = a3 → q a2 = false → + loop A k2 f q a3 = Some ? a4 → + loop A (k1+k2) f q a1 = Some ? a4. +#Sig #f #p #q #Hpq #k1 elim k1 + [normalize #k2 #a1 #a2 #a3 #a4 #H destruct + |#k1' #Hind #k2 #a1 #a2 #a3 #a4 normalize in ⊢ (%→?); + cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?); + [#eqa1a2 destruct #eqa2a3 #Hqa2 #H + whd in ⊢ (??(??%???)?); >plus_n_Sm @loop_incr + whd in ⊢ (??%?); >Hqa2 >eqa2a3 @H + |normalize >(Hpq … pa1) normalize + #H1 #H2 #H3 @(Hind … H2) // + ] + ] +qed. + +lemma loop_split : ∀A,f,p,q.(∀b. q b = true → p b = true) → + ∀k,a1,a2. + loop A k f q a1 = Some ? a2 → + ∃k1,a3. + loop A k1 f p a1 = Some ? a3 ∧ + loop A (S(k-k1)) f q a3 = Some ? a2. +#A #f #p #q #Hpq #k elim k + [#a1 #a2 normalize #Heq destruct + |#i #Hind #a1 #a2 normalize + cases (true_or_false (q a1)) #Hqa1 >Hqa1 normalize + [ #Ha1a2 destruct + @(ex_intro … 1) @(ex_intro … a2) % + [normalize >(Hpq …Hqa1) // |>Hqa1 //] + |#Hloop cases (true_or_false (p a1)) #Hpa1 + [@(ex_intro … 1) @(ex_intro … a1) % + [normalize >Hpa1 // |>Hqa1 Hpa1 normalize // | @Hloop2 ] + ] + ] + ] +qed. + +(* +lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) → + ∀k1,k2,a1,a2,a3. + loop A k1 f p a1 = Some ? a2 → + loop A k2 f q a2 = Some ? a3 → + loop A (k1+k2) f q a1 = Some ? a3. +#Sig #f #p #q #Hpq #k1 elim k1 + [normalize #k2 #a1 #a2 #a3 #H destruct + |#k1' #Hind #k2 #a1 #a2 #a3 normalize in ⊢ (%→?→?); + cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?); + [#eqa1a2 destruct #H @loop_incr // + |normalize >(Hpq … pa1) normalize + #H1 #H2 @(Hind … H2) // + ] + ] +qed. +*) definition initc ≝ λsig.λM:TM sig.λt. - mk_config sig M (start sig M) t. + mk_config sig (states sig M) (start sig M) t. definition Realize ≝ λsig.λM:TM sig.λR:relation (tape sig). ∀t.∃i.∃outc. loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) (initc sig M t) = Some ? outc ∧ R t (ctape ?? outc). +definition WRealize ≝ λsig.λM:TM sig.λR:relation (tape sig). +∀t,i,outc. + loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) (initc sig M t) = Some ? outc → + R t (ctape ?? outc). + +lemma loop_eq : ∀sig,f,q,i,j,a,x,y. + loop sig i f q a = Some ? x → loop sig j f q a = Some ? y → x = y. +#sig #f #q #i #j @(nat_elim2 … i j) +[ #n #a #x #y normalize #Hfalse destruct (Hfalse) +| #n #a #x #y #H1 normalize #Hfalse destruct (Hfalse) +| #n1 #n2 #IH #a #x #y normalize cases (q a) normalize + [ #H1 #H2 destruct % + | /2/ ] +] +qed. + +theorem Realize_to_WRealize : ∀sig,M,R.Realize sig M R → WRealize sig M R. +#sig #M #R #H1 #inc #i #outc #Hloop +cases (H1 inc) #k * #outc1 * #Hloop1 #HR +>(loop_eq … Hloop Hloop1) // +qed. + +definition accRealize ≝ λsig.λM:TM sig.λacc:states sig M.λRtrue,Rfalse:relation (tape sig). +∀t.∃i.∃outc. + loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) (initc sig M t) = Some ? outc ∧ + (cstate ?? outc = acc → Rtrue t (ctape ?? outc)) ∧ + (cstate ?? outc ≠ acc → Rfalse t (ctape ?? outc)). + (* Compositions *) definition seq_trans ≝ λsig. λM1,M2 : TM sig. @@ -121,71 +313,204 @@ definition Rlink ≝ λsig.λM1,M2.λc1,c2. interpretation "relation composition" 'compose R1 R2 = (Rcomp ? R1 R2). -theorem sem_seq: ∀sig,M1,M2,R1,R2. - Realize sig M1 R1 → Realize sig M2 R2 → - Realize sig (seq sig M1 M2) (R1 ∘ R2). -#sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t -cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 -cases (HR2 (ctape sig M1 outc1)) #k2 * #outc2 * #Hloop2 #HM2 -@(ex_intro … (S(k1+k2))) @ - - - - -definition empty_tapes ≝ λsig.λn. -mk_Vector ? n (make_list (tape sig) (mk_tape sig [] []) n) ?. -elim n // normalize // +definition lift_confL ≝ + λsig,S1,S2,c.match c with + [ mk_config s t ⇒ mk_config sig (FinSum S1 S2) (inl … s) t ]. + +definition lift_confR ≝ + λsig,S1,S2,c.match c with + [ mk_config s t ⇒ mk_config sig (FinSum S1 S2) (inr … s) t ]. + +definition halt_liftL ≝ + λS1,S2,halt.λs:FinSum S1 S2. + match s with + [ inl s1 ⇒ halt s1 + | inr _ ⇒ true ]. (* should be vacuous in all cases we use halt_liftL *) + +definition halt_liftR ≝ + λS1,S2,halt.λs:FinSum S1 S2. + match s with + [ inl _ ⇒ false + | inr s2 ⇒ halt s2 ]. + +lemma p_halt_liftL : ∀sig,S1,S2,halt,c. + halt (cstate sig S1 c) = + halt_liftL S1 S2 halt (cstate … (lift_confL … c)). +#sig #S1 #S2 #halt #c cases c #s #t % qed. -definition init ≝ λsig.λM:TM sig.λi:(list sig). - mk_config ?? - (start sig M) - (vec_cons ? (mk_tape sig [] i) ? (empty_tapes sig (tapes_no sig M))) - [ ]. +lemma trans_liftL : ∀sig,M1,M2,s,a,news,move. + halt ? M1 s = false → + trans sig M1 〈s,a〉 = 〈news,move〉 → + trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inl … news,move〉. +#sig (*#M1*) * #Q1 #T1 #init1 #halt1 #M2 #s #a #news #move +#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % +qed. -definition stop ≝ λsig.λM:TM sig.λc:config sig M. - halt sig M (state sig M c). +lemma trans_liftR : ∀sig,M1,M2,s,a,news,move. + halt ? M2 s = false → + trans sig M2 〈s,a〉 = 〈news,move〉 → + trans sig (seq sig M1 M2) 〈inr … s,a〉 = 〈inr … news,move〉. +#sig #M1 * #Q2 #T2 #init2 #halt2 #s #a #news #move +#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % +qed. -let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ - match n with - [ O ⇒ None ? - | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) - ]. +lemma config_eq : + ∀sig,M,c1,c2. + cstate sig M c1 = cstate sig M c2 → + ctape sig M c1 = ctape sig M c2 → c1 = c2. +#sig #M1 * #s1 #t1 * #s2 #t2 // +qed. -(* Compute ? M f states that f is computed by M *) -definition Compute ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). -∀l.∃i.∃c. - loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ - out ?? c = f l. +lemma step_lift_confR : ∀sig,M1,M2,c0. + halt ? M2 (cstate ?? c0) = false → + step sig (seq sig M1 M2) (lift_confR sig (states ? M1) (states ? M2) c0) = + lift_confR sig (states ? M1) (states ? M2) (step sig M2 c0). +#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s #t + lapply (refl ? (trans ?? 〈s,current sig t〉)) + cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %); + #s0 #m0 cases t + [ #Heq #Hhalt + | 2,3: #s1 #l1 #Heq #Hhalt + |#ls #s1 #rs #Heq #Hhalt ] + whd in ⊢ (???(????%)); >Heq + whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); + >(trans_liftR … Heq) // +qed. -(* for decision problems, we accept a string if on termination -output is not empty *) +lemma step_lift_confL : ∀sig,M1,M2,c0. + halt ? M1 (cstate ?? c0) = false → + step sig (seq sig M1 M2) (lift_confL sig (states ? M1) (states ? M2) c0) = + lift_confL sig ?? (step sig M1 c0). +#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s #t + lapply (refl ? (trans ?? 〈s,current sig t〉)) + cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %); + #s0 #m0 cases t + [ #Heq #Hhalt + | 2,3: #s1 #l1 #Heq #Hhalt + |#ls #s1 #rs #Heq #Hhalt ] + whd in ⊢ (???(????%)); >Heq + whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); + >(trans_liftL … Heq) // +qed. -definition ComputeB ≝ λsig.λM:TM sig.λf:(list sig) → bool. -∀l.∃i.∃c. - loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ - (isnilb ? (out ?? c) = false). +lemma loop_lift : ∀A,B,k,lift,f,g,h,hlift,c1,c2. + (∀x.hlift (lift x) = h x) → + (∀x.h x = false → lift (f x) = g (lift x)) → + loop A k f h c1 = Some ? c2 → + loop B k g hlift (lift c1) = Some ? (lift … c2). +#A #B #k #lift #f #g #h #hlift #c1 #c2 #Hfg #Hhlift +generalize in match c1; elim k +[#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) +|#k0 #IH #c0 whd in ⊢ (??%? → ??%?); + cases (true_or_false (h c0)) #Hc0 >Hfg >Hc0 + [ normalize #Heq destruct (Heq) % + | normalize Hc0 + [ >(?: halt_liftL ?? (halt sig M1) (cstate sig ? (lift_confL … c0)) = true) + [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % + | (?: halt_liftL ?? (halt sig M1) (cstate ?? (lift_confL … c0)) = false) + [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f + @step_lift_confL // + | Hc0 + [ >(?: halt ? (seq sig M1 M2) (cstate sig ? (lift_confR … c0)) = true) + [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % + | (?: halt ? (seq sig M1 M2) (cstate sig ? (lift_confR … c0)) = false) + [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f + @step_lift_confR // + | Hpa normalize #H1 destruct // + | >Hpa normalize @IH + ] +] +qed. + +lemma trans_liftL_true : ∀sig,M1,M2,s,a. + halt ? M1 s = true → + trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inr … (start ? M2),None ?〉. +#sig #M1 #M2 #s #a +#Hhalt whd in ⊢ (??%?); >Hhalt % +qed. -inductive cmove (A:Type[0]) (f:A→A) (p:A →bool) (a,b:A): Type[0] ≝ - mk_move: p a = false → b = f a → cmove A f p a b. +lemma eq_ctape_lift_conf_L : ∀sig,S1,S2,outc. + ctape sig (FinSum S1 S2) (lift_confL … outc) = ctape … outc. +#sig #S1 #S2 #outc cases outc #s #t % +qed. -inductive cstar (A:Type[0]) (M:A→A→Type[0]) : A →A → Type[0] ≝ -| empty : ∀a. cstar A M a a -| more : ∀a,b,c. M a b → cstar A M b c → cstar A M a c. - -definition computation ≝ λsig.λM:TM sig. - cstar ? (cmove ? (step sig M) (stop sig M)). +lemma eq_ctape_lift_conf_R : ∀sig,S1,S2,outc. + ctape sig (FinSum S1 S2) (lift_confR … outc) = ctape … outc. +#sig #S1 #S2 #outc cases outc #s #t % +qed. -definition Compute_expl ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). - ∀l.∃c.computation sig M (init sig M l) c → - (stop sig M c = true) ∧ out ?? c = f l. +theorem sem_seq: ∀sig,M1,M2,R1,R2. + Realize sig M1 R1 → Realize sig M2 R2 → + Realize sig (seq sig M1 M2) (R1 ∘ R2). +#sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t +cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 +cases (HR2 (ctape sig (states ? M1) outc1)) #k2 * #outc2 * #Hloop2 #HM2 +@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) +% +[@(loop_merge ??????????? + (loop_lift ??? (lift_confL sig (states sig M1) (states sig M2)) + (step sig M1) (step sig (seq sig M1 M2)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) … Hloop1)) + [ * * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + || #c0 #Hhalt (trans_liftL_true sig M1 M2 ??) + [ whd in ⊢ (??%?); whd in ⊢ (???%); + @config_eq whd in ⊢ (???%); // + | @(loop_Some ?????? Hloop10) ] + ] +| @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1))) + % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R // +] +qed. -definition ComputeB_expl ≝ λsig.λM:TM sig.λf:(list sig) → bool. - ∀l.∃c.computation sig M (init sig M l) c → - (stop sig M c = true) ∧ (isnilb ? (out ?? c) = false).